Spaces:
No application file
No application file
# xFasterTransformer Inference Framework | |
Integrated [xFasterTransformer](https://github.com/intel/xFasterTransformer) customized framework into Fastchat to provide **Faster** inference speed on Intel CPU. | |
## Install xFasterTransformer | |
Setup environment (please refer to [this link](https://github.com/intel/xFasterTransformer#installation) for more details): | |
```bash | |
pip install xfastertransformer | |
``` | |
## Prepare models | |
Prepare Model (please refer to [this link](https://github.com/intel/xFasterTransformer#prepare-model) for more details): | |
```bash | |
python ./tools/chatglm_convert.py -i ${HF_DATASET_DIR} -o ${OUTPUT_DIR} | |
``` | |
## Parameters of xFasterTransformer | |
--enable-xft to enable xfastertransformer in Fastchat | |
--xft-max-seq-len to set the max token length the model can process. max token length include input token length. | |
--xft-dtype to set datatype used in xFasterTransformer for computation. xFasterTransformer can support fp32, fp16, int8, bf16 and hybrid data types like : bf16_fp16, bf16_int8. For datatype details please refer to [this link](https://github.com/intel/xFasterTransformer/wiki/Data-Type-Support-Platform) | |
Chat with the CLI: | |
```bash | |
#run inference on all CPUs and using float16 | |
python3 -m fastchat.serve.cli \ | |
--model-path /path/to/models \ | |
--enable-xft \ | |
--xft-dtype fp16 | |
``` | |
or with numactl on multi-socket server for better performance | |
```bash | |
#run inference on numanode 0 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16) | |
numactl -N 0 --localalloc \ | |
python3 -m fastchat.serve.cli \ | |
--model-path /path/to/models/chatglm2_6b_cpu/ \ | |
--enable-xft \ | |
--xft-dtype bf16_fp16 | |
``` | |
or using MPI to run inference on 2 sockets for better performance | |
```bash | |
#run inference on numanode 0 and 1 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16) | |
OMP_NUM_THREADS=$CORE_NUM_PER_SOCKET LD_PRELOAD=libiomp5.so mpirun \ | |
-n 1 numactl -N 0 --localalloc \ | |
python -m fastchat.serve.cli \ | |
--model-path /path/to/models/chatglm2_6b_cpu/ \ | |
--enable-xft \ | |
--xft-dtype bf16_fp16 : \ | |
-n 1 numactl -N 1 --localalloc \ | |
python -m fastchat.serve.cli \ | |
--model-path /path/to/models/chatglm2_6b_cpu/ \ | |
--enable-xft \ | |
--xft-dtype bf16_fp16 | |
``` | |
Start model worker: | |
```bash | |
# Load model with default configuration (max sequence length 4096, no GPU split setting). | |
python3 -m fastchat.serve.model_worker \ | |
--model-path /path/to/models \ | |
--enable-xft \ | |
--xft-dtype bf16_fp16 | |
``` | |
or with numactl on multi-socket server for better performance | |
```bash | |
#run inference on numanode 0 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16) | |
numactl -N 0 --localalloc python3 -m fastchat.serve.model_worker \ | |
--model-path /path/to/models \ | |
--enable-xft \ | |
--xft-dtype bf16_fp16 | |
``` | |
or using MPI to run inference on 2 sockets for better performance | |
```bash | |
#run inference on numanode 0 and 1 and with data type bf16_fp16 (first token uses bfloat16, and rest tokens use float16) | |
OMP_NUM_THREADS=$CORE_NUM_PER_SOCKET LD_PRELOAD=libiomp5.so mpirun \ | |
-n 1 numactl -N 0 --localalloc python -m fastchat.serve.model_worker \ | |
--model-path /path/to/models \ | |
--enable-xft \ | |
--xft-dtype bf16_fp16 : \ | |
-n 1 numactl -N 1 --localalloc python -m fastchat.serve.model_worker \ | |
--model-path /path/to/models \ | |
--enable-xft \ | |
--xft-dtype bf16_fp16 | |
``` | |
For more details, please refer to [this link](https://github.com/intel/xFasterTransformer#how-to-run) | |