Spaces:
Running
Running
Henry Harbeck
commited on
Commit
·
926e69f
1
Parent(s):
3fb7b66
add window functions in Polars!
Browse files- polars/13_window_functions.py +538 -0
polars/13_window_functions.py
ADDED
|
@@ -0,0 +1,538 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.13"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "duckdb==1.2.2",
|
| 5 |
+
# "marimo",
|
| 6 |
+
# "polars==1.29.0",
|
| 7 |
+
# "pyarrow==20.0.0",
|
| 8 |
+
# "sqlglot==26.16.4",
|
| 9 |
+
# ]
|
| 10 |
+
# ///
|
| 11 |
+
|
| 12 |
+
import marimo
|
| 13 |
+
|
| 14 |
+
__generated_with = "0.12.9"
|
| 15 |
+
app = marimo.App(width="medium", app_title="Window Functions")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@app.cell
|
| 19 |
+
def _():
|
| 20 |
+
import marimo as mo
|
| 21 |
+
return (mo,)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@app.cell(hide_code=True)
|
| 25 |
+
def _(mo):
|
| 26 |
+
mo.md(
|
| 27 |
+
r"""
|
| 28 |
+
# Window Functions
|
| 29 |
+
_By [Henry Harbeck](https://github.com/henryharbeck)._
|
| 30 |
+
|
| 31 |
+
In this notebook, you'll learn how to perform different types of window functions in Polars.
|
| 32 |
+
You'll work with partitions, ordering and Polars' available "mapping strategies".
|
| 33 |
+
|
| 34 |
+
We'll use a dataset with a few days of paid and organic digital revenue data.
|
| 35 |
+
"""
|
| 36 |
+
)
|
| 37 |
+
return
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
@app.cell
|
| 41 |
+
def _():
|
| 42 |
+
from datetime import date
|
| 43 |
+
|
| 44 |
+
import polars as pl
|
| 45 |
+
|
| 46 |
+
dates = pl.date_range(date(2025, 2, 1), date(2025, 2, 5), eager=True)
|
| 47 |
+
|
| 48 |
+
df = pl.DataFrame(
|
| 49 |
+
{
|
| 50 |
+
"date": pl.concat([dates, dates]).sort(),
|
| 51 |
+
"channel": ["Paid", "Organic"] * 5,
|
| 52 |
+
"revenue": [6000, 2000, 5200, 4500, 4200, 5900, 3500, 5000, 4800, 4800],
|
| 53 |
+
}
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
df
|
| 57 |
+
return date, dates, df, pl
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
@app.cell(hide_code=True)
|
| 61 |
+
def _(mo):
|
| 62 |
+
mo.md(
|
| 63 |
+
r"""
|
| 64 |
+
## What is a window function?
|
| 65 |
+
|
| 66 |
+
A window function performs a calculation across a set of rows that are related to the current row.
|
| 67 |
+
They allow you to perform aggregations and other calculations within a group without collapsing
|
| 68 |
+
the number of rows (opposed to a group by aggregation, which does collapse the number of rows). Typically the result of a
|
| 69 |
+
window function is assigned back to rows within the group, but Polars also offers additional alternatives.
|
| 70 |
+
|
| 71 |
+
Window functions can be used by specifying the [`over`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.over.html)
|
| 72 |
+
method on an expression.
|
| 73 |
+
"""
|
| 74 |
+
)
|
| 75 |
+
return
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@app.cell(hide_code=True)
|
| 79 |
+
def _(mo):
|
| 80 |
+
mo.md(
|
| 81 |
+
r"""
|
| 82 |
+
## Partitions
|
| 83 |
+
Partitions are the "group by" columns. We will have one "window" of data per unique value in the partition column(s), to
|
| 84 |
+
which the function will be applied.
|
| 85 |
+
"""
|
| 86 |
+
)
|
| 87 |
+
return
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
@app.cell(hide_code=True)
|
| 91 |
+
def _(mo):
|
| 92 |
+
mo.md(
|
| 93 |
+
r"""
|
| 94 |
+
### Partitioning by a single column
|
| 95 |
+
|
| 96 |
+
Let's get the total revenue per date...
|
| 97 |
+
"""
|
| 98 |
+
)
|
| 99 |
+
return
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@app.cell
|
| 103 |
+
def _(df, pl):
|
| 104 |
+
daily_revenue = pl.col("revenue").sum().over("date")
|
| 105 |
+
|
| 106 |
+
df.with_columns(daily_revenue.alias("daily_revenue"))
|
| 107 |
+
return (daily_revenue,)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
@app.cell(hide_code=True)
|
| 111 |
+
def _(mo):
|
| 112 |
+
mo.md(r"""And then see what percentage of the daily total was Paid and what percentage was Organic.""")
|
| 113 |
+
return
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
@app.cell
|
| 117 |
+
def _(daily_revenue, df, pl):
|
| 118 |
+
df.with_columns(daily_revenue_pct=(pl.col("revenue") / daily_revenue))
|
| 119 |
+
return
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@app.cell(hide_code=True)
|
| 123 |
+
def _(mo):
|
| 124 |
+
mo.md(
|
| 125 |
+
r"""
|
| 126 |
+
Let's now calculate the maximum revenue, cumulative revenue, rank the revenue and calculate the day-on-day change,
|
| 127 |
+
all partitioned (split) by channel.
|
| 128 |
+
"""
|
| 129 |
+
)
|
| 130 |
+
return
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
@app.cell
|
| 134 |
+
def _(df, pl):
|
| 135 |
+
df.with_columns(
|
| 136 |
+
maximum_revenue=pl.col("revenue").max().over("channel"),
|
| 137 |
+
cumulative_revenue=pl.col("revenue").cum_sum().over("channel"),
|
| 138 |
+
revenue_rank=pl.col("revenue").rank(descending=True).over("channel"),
|
| 139 |
+
day_on_day_change=pl.col("revenue").diff().over("channel"),
|
| 140 |
+
)
|
| 141 |
+
return
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
@app.cell(hide_code=True)
|
| 145 |
+
def _(mo):
|
| 146 |
+
mo.md(
|
| 147 |
+
r"""
|
| 148 |
+
Note that aggregation functions such as `sum` and `max` have their value applied back to each row in the partition
|
| 149 |
+
(group). Non-aggregate functions such as `cum_sum`, `rank` and `diff` can produce different values per row, but
|
| 150 |
+
still only consider rows within their partition.
|
| 151 |
+
"""
|
| 152 |
+
)
|
| 153 |
+
return
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
@app.cell(hide_code=True)
|
| 157 |
+
def _(mo):
|
| 158 |
+
mo.md(
|
| 159 |
+
r"""
|
| 160 |
+
### Partitioning by multiple columns
|
| 161 |
+
|
| 162 |
+
We can also partition by multiple columns.
|
| 163 |
+
|
| 164 |
+
Let's add a column to see whether it is a weekday (business day), then get the maximum revenue by that and
|
| 165 |
+
the channel.
|
| 166 |
+
"""
|
| 167 |
+
)
|
| 168 |
+
return
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
@app.cell
|
| 172 |
+
def _(df, pl):
|
| 173 |
+
(
|
| 174 |
+
df.with_columns(
|
| 175 |
+
is_weekday=pl.col("date").dt.is_business_day(),
|
| 176 |
+
).with_columns(
|
| 177 |
+
max_rev_by_channel_and_weekday=pl.col("revenue").max().over("is_weekday", "channel"),
|
| 178 |
+
)
|
| 179 |
+
)
|
| 180 |
+
return
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
@app.cell(hide_code=True)
|
| 184 |
+
def _(mo):
|
| 185 |
+
mo.md(
|
| 186 |
+
r"""
|
| 187 |
+
### Partitioning by expressions
|
| 188 |
+
|
| 189 |
+
Polars also lets you partition by expressions without needing to create them as columns first.
|
| 190 |
+
|
| 191 |
+
So, we could re-write the previous window function as...
|
| 192 |
+
"""
|
| 193 |
+
)
|
| 194 |
+
return
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
@app.cell
|
| 198 |
+
def _(df, pl):
|
| 199 |
+
df.with_columns(
|
| 200 |
+
max_rev_by_channel_and_weekday=pl.col("revenue")
|
| 201 |
+
.max()
|
| 202 |
+
.over((pl.col("date").dt.is_business_day()), "channel")
|
| 203 |
+
)
|
| 204 |
+
return
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
@app.cell(hide_code=True)
|
| 208 |
+
def _(mo):
|
| 209 |
+
mo.md(
|
| 210 |
+
r"""
|
| 211 |
+
Window functions fit into Polars' composable [expressions API](https://docs.pola.rs/user-guide/concepts/expressions-and-contexts/#expressions),
|
| 212 |
+
so can be combined with all [aggregation methods](https://docs.pola.rs/api/python/stable/reference/expressions/aggregation.html)
|
| 213 |
+
and methods that consider more than 1 row (e.g., `cum_sum`, `rank` and `diff` as we just saw).
|
| 214 |
+
"""
|
| 215 |
+
)
|
| 216 |
+
return
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
@app.cell(hide_code=True)
|
| 220 |
+
def _(mo):
|
| 221 |
+
mo.md(
|
| 222 |
+
r"""
|
| 223 |
+
## Ordering
|
| 224 |
+
|
| 225 |
+
The `order_by` parameter controls how to order the data within the window. The function is applied to the data in this
|
| 226 |
+
order.
|
| 227 |
+
|
| 228 |
+
Up until this point, we have been letting Polars do the window function calculations based on the order of the rows in the
|
| 229 |
+
DataFrame. There can be times where we would like order of the calculation and the order of the output itself to differ.
|
| 230 |
+
"""
|
| 231 |
+
)
|
| 232 |
+
return
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
@app.cell(hide_code=True)
|
| 236 |
+
def _(mo):
|
| 237 |
+
mo.md(
|
| 238 |
+
"""
|
| 239 |
+
### Ordering in a window function
|
| 240 |
+
|
| 241 |
+
Let's say we want the DataFrame ordered by day of week, but we still want cumulative revenue and the first revenue observation, both
|
| 242 |
+
ordered by date and partitioned by channel...
|
| 243 |
+
"""
|
| 244 |
+
)
|
| 245 |
+
return
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
@app.cell
|
| 249 |
+
def _(df, pl):
|
| 250 |
+
# Monday = 1, Sunday = 7
|
| 251 |
+
df_sorted = (
|
| 252 |
+
df.sort(pl.col("date").dt.weekday())
|
| 253 |
+
# Show the weekday for transparency
|
| 254 |
+
.with_columns(pl.col("date").dt.to_string("%a").alias("weekday"))
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
df_sorted.select(
|
| 258 |
+
"date",
|
| 259 |
+
"weekday",
|
| 260 |
+
"channel",
|
| 261 |
+
"revenue",
|
| 262 |
+
pl.col("revenue").cum_sum().over("channel", order_by="date").alias("cumulative_revenue"),
|
| 263 |
+
pl.col("revenue").first().over("channel", order_by="date").alias("first_revenue"),
|
| 264 |
+
)
|
| 265 |
+
return (df_sorted,)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
@app.cell(hide_code=True)
|
| 269 |
+
def _(mo):
|
| 270 |
+
mo.md(
|
| 271 |
+
r"""
|
| 272 |
+
### Note about window function ordering compared to SQL
|
| 273 |
+
|
| 274 |
+
It is worth noting that traditionally in SQL, many more functions require an `ORDER BY` within `OVER` than in
|
| 275 |
+
equivalent functions in Polars.
|
| 276 |
+
|
| 277 |
+
For example, an SQL `RANK()` expression like...
|
| 278 |
+
"""
|
| 279 |
+
)
|
| 280 |
+
return
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
@app.cell
|
| 284 |
+
def _(df, mo):
|
| 285 |
+
_df = mo.sql(
|
| 286 |
+
f"""
|
| 287 |
+
SELECT
|
| 288 |
+
date,
|
| 289 |
+
channel,
|
| 290 |
+
revenue,
|
| 291 |
+
RANK() OVER (PARTITION BY channel ORDER BY revenue DESC) AS revenue_rank
|
| 292 |
+
FROM df
|
| 293 |
+
-- re-sort the output back to the original order for ease of comparison
|
| 294 |
+
ORDER BY date, channel DESC
|
| 295 |
+
"""
|
| 296 |
+
)
|
| 297 |
+
return
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
@app.cell(hide_code=True)
|
| 301 |
+
def _(mo):
|
| 302 |
+
mo.md(
|
| 303 |
+
r"""
|
| 304 |
+
...does not require an `order_by` in Polars as the column and the function are already bound (including with the
|
| 305 |
+
`descending=True` argument).
|
| 306 |
+
"""
|
| 307 |
+
)
|
| 308 |
+
return
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
@app.cell
|
| 312 |
+
def _(df, pl):
|
| 313 |
+
df.select(
|
| 314 |
+
"date",
|
| 315 |
+
"channel",
|
| 316 |
+
"revenue",
|
| 317 |
+
revenue_rank=pl.col("revenue").rank(descending=True).over("channel"),
|
| 318 |
+
)
|
| 319 |
+
return
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
@app.cell(hide_code=True)
|
| 323 |
+
def _(mo):
|
| 324 |
+
mo.md(
|
| 325 |
+
r"""
|
| 326 |
+
### Descending order
|
| 327 |
+
|
| 328 |
+
We can also order in descending order by passing `descending=True`...
|
| 329 |
+
"""
|
| 330 |
+
)
|
| 331 |
+
return
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
@app.cell
|
| 335 |
+
def _(df_sorted, pl):
|
| 336 |
+
(
|
| 337 |
+
df_sorted.select(
|
| 338 |
+
"date",
|
| 339 |
+
"weekday",
|
| 340 |
+
"channel",
|
| 341 |
+
"revenue",
|
| 342 |
+
pl.col("revenue").cum_sum().over("channel", order_by="date").alias("cumulative_revenue"),
|
| 343 |
+
pl.col("revenue").first().over("channel", order_by="date").alias("first_revenue"),
|
| 344 |
+
pl.col("revenue")
|
| 345 |
+
.first()
|
| 346 |
+
.over("channel", order_by="date", descending=True)
|
| 347 |
+
.alias("last_revenue"),
|
| 348 |
+
# Or, alternatively
|
| 349 |
+
pl.col("revenue").last().over("channel", order_by="date").alias("also_last_revenue"),
|
| 350 |
+
)
|
| 351 |
+
)
|
| 352 |
+
return
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
@app.cell(hide_code=True)
|
| 356 |
+
def _(mo):
|
| 357 |
+
mo.md(
|
| 358 |
+
"""
|
| 359 |
+
## Mapping Strategies
|
| 360 |
+
|
| 361 |
+
Mapping Strategies control how Polars maps the result of the window function back to the original DataFrame
|
| 362 |
+
|
| 363 |
+
Generally (by default) the result of a window function is assigned back to rows within the group. Through Polars' mapping
|
| 364 |
+
strategies, we will explore other possibilities.
|
| 365 |
+
"""
|
| 366 |
+
)
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
@app.cell(hide_code=True)
|
| 371 |
+
def _(mo):
|
| 372 |
+
mo.md(
|
| 373 |
+
"""
|
| 374 |
+
### Group to rows
|
| 375 |
+
|
| 376 |
+
"group_to_rows" is the default mapping strategy and assigns the result of the window function back to the rows in the
|
| 377 |
+
window.
|
| 378 |
+
"""
|
| 379 |
+
)
|
| 380 |
+
return
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
@app.cell
|
| 384 |
+
def _(df, pl):
|
| 385 |
+
df.with_columns(
|
| 386 |
+
cumulative_revenue=pl.col("revenue").cum_sum().over("channel", mapping_strategy="group_to_rows")
|
| 387 |
+
)
|
| 388 |
+
return
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
@app.cell(hide_code=True)
|
| 392 |
+
def _(mo):
|
| 393 |
+
mo.md(
|
| 394 |
+
"""
|
| 395 |
+
### Join
|
| 396 |
+
|
| 397 |
+
The "join" mapping strategy aggregates the resulting values in a list and repeats the list for all rows in the group.
|
| 398 |
+
"""
|
| 399 |
+
)
|
| 400 |
+
return
|
| 401 |
+
|
| 402 |
+
|
| 403 |
+
@app.cell
|
| 404 |
+
def _(df, pl):
|
| 405 |
+
df.with_columns(
|
| 406 |
+
cumulative_revenue=pl.col("revenue").cum_sum().over("channel", mapping_strategy="join")
|
| 407 |
+
)
|
| 408 |
+
return
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
@app.cell(hide_code=True)
|
| 412 |
+
def _(mo):
|
| 413 |
+
mo.md(
|
| 414 |
+
r"""
|
| 415 |
+
### Explode
|
| 416 |
+
|
| 417 |
+
The "explode" mapping strategy is similar to "group_to_rows", but is typically faster and does not preserve the order of
|
| 418 |
+
rows. Due to this, it requires sorting columns (including those not in the window function) for the result to make sense.
|
| 419 |
+
It should also only be used in a `select` context and not `with_columns`.
|
| 420 |
+
|
| 421 |
+
The result of "explode" is similar to a `group_by` followed by an `agg` followed by an `explode`.
|
| 422 |
+
"""
|
| 423 |
+
)
|
| 424 |
+
return
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
@app.cell
|
| 428 |
+
def _(df, pl):
|
| 429 |
+
df.select(
|
| 430 |
+
pl.all().over("channel", order_by="date", mapping_strategy="explode"),
|
| 431 |
+
cumulative_revenue=pl.col("revenue")
|
| 432 |
+
.cum_sum()
|
| 433 |
+
.over("channel", order_by="date", mapping_strategy="explode"),
|
| 434 |
+
)
|
| 435 |
+
return
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
@app.cell(hide_code=True)
|
| 439 |
+
def _(mo):
|
| 440 |
+
mo.md(r"""Note the modified order of the rows in the output, (but data is the same)...""")
|
| 441 |
+
return
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
@app.cell(hide_code=True)
|
| 445 |
+
def _(mo):
|
| 446 |
+
mo.md(r"""## Other tips and tricks""")
|
| 447 |
+
return
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
@app.cell(hide_code=True)
|
| 451 |
+
def _(mo):
|
| 452 |
+
mo.md(
|
| 453 |
+
r"""
|
| 454 |
+
### Reusing a window
|
| 455 |
+
|
| 456 |
+
In SQL there is a `WINDOW` keyword, which easily allows the re-use of the same window specification across expressions
|
| 457 |
+
without needing to repeat it. In Polars, this can be achieved by using `dict` unpacking to pass arguments to `over`.
|
| 458 |
+
"""
|
| 459 |
+
)
|
| 460 |
+
return
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
@app.cell
|
| 464 |
+
def _(df_sorted, pl):
|
| 465 |
+
window = {
|
| 466 |
+
"partition_by": "date",
|
| 467 |
+
"order_by": "date",
|
| 468 |
+
"mapping_strategy": "group_to_rows",
|
| 469 |
+
}
|
| 470 |
+
|
| 471 |
+
df_sorted.with_columns(
|
| 472 |
+
pct_daily_revenue=(pl.col("revenue") / pl.col("revenue").sum()).over(**window),
|
| 473 |
+
highest_revenue_channel=pl.col("channel").top_k_by("revenue", k=1).first().over(**window),
|
| 474 |
+
daily_revenue_rank=pl.col("revenue").rank().over(**window),
|
| 475 |
+
cumulative_daily_revenue=pl.col("revenue").cum_sum().over(**window),
|
| 476 |
+
)
|
| 477 |
+
return (window,)
|
| 478 |
+
|
| 479 |
+
|
| 480 |
+
@app.cell(hide_code=True)
|
| 481 |
+
def _(mo):
|
| 482 |
+
mo.md(
|
| 483 |
+
r"""
|
| 484 |
+
### Rolling Windows
|
| 485 |
+
|
| 486 |
+
Much like in SQL, Polars also gives you the ability to do rolling window computations. In Polars, the rolling calculation
|
| 487 |
+
is also aware of temporal data, making it easy to express if the data is not contiguous (i.e., observations are missing).
|
| 488 |
+
|
| 489 |
+
Let's look at an example of that now by filtering out one day of our data and then calculating both a 3-day and 3-row
|
| 490 |
+
max revenue split by channel...
|
| 491 |
+
"""
|
| 492 |
+
)
|
| 493 |
+
return
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
@app.cell
|
| 497 |
+
def _(date, df, pl):
|
| 498 |
+
(
|
| 499 |
+
df.filter(pl.col("date") != date(2025, 2, 2))
|
| 500 |
+
.with_columns(
|
| 501 |
+
# "3d" -> 3 days
|
| 502 |
+
rev_3_day_max=pl.col("revenue").rolling_max_by("date", "3d", min_samples=1).over("channel"),
|
| 503 |
+
rev_3_row_max=pl.col("revenue").rolling_max(3, min_samples=1).over("channel"),
|
| 504 |
+
)
|
| 505 |
+
# sort to make the output a little easier to analyze
|
| 506 |
+
.sort("channel", "date")
|
| 507 |
+
)
|
| 508 |
+
return
|
| 509 |
+
|
| 510 |
+
|
| 511 |
+
@app.cell(hide_code=True)
|
| 512 |
+
def _(mo):
|
| 513 |
+
mo.md(r"""Notice the difference in the 2nd last row...""")
|
| 514 |
+
return
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
@app.cell(hide_code=True)
|
| 518 |
+
def _(mo):
|
| 519 |
+
mo.md(r"""We hope you enjoyed this notebook, demonstrating window functions in Polars!""")
|
| 520 |
+
return
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
@app.cell
|
| 524 |
+
def _(mo):
|
| 525 |
+
mo.md(
|
| 526 |
+
r"""
|
| 527 |
+
## Additional References
|
| 528 |
+
|
| 529 |
+
- [Polars User guide - Window functions](https://docs.pola.rs/user-guide/expressions/window-functions/)
|
| 530 |
+
- [Polars over method API reference](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.over.html)
|
| 531 |
+
- [PostgreSQL window function documentation](https://www.postgresql.org/docs/current/tutorial-window.html)
|
| 532 |
+
"""
|
| 533 |
+
)
|
| 534 |
+
return
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
if __name__ == "__main__":
|
| 538 |
+
app.run()
|