Spaces:
Running
Running
Merge pull request #94 from marimo-team/Mustjaab/main
Browse files- duckdb/DuckDB_Loading_CSVs.py +173 -0
duckdb/DuckDB_Loading_CSVs.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# /// script
|
2 |
+
# requires-python = ">=3.10"
|
3 |
+
# dependencies = [
|
4 |
+
# "marimo",
|
5 |
+
# "plotly.express",
|
6 |
+
# "plotly==6.0.1",
|
7 |
+
# "duckdb==1.2.1",
|
8 |
+
# "sqlglot==26.11.1",
|
9 |
+
# "pyarrow==19.0.1",
|
10 |
+
# "polars==1.27.1",
|
11 |
+
# ]
|
12 |
+
# ///
|
13 |
+
|
14 |
+
import marimo
|
15 |
+
|
16 |
+
__generated_with = "0.12.10"
|
17 |
+
app = marimo.App(width="medium")
|
18 |
+
|
19 |
+
|
20 |
+
@app.cell(hide_code=True)
|
21 |
+
def _(mo):
|
22 |
+
mo.md(r"""#Loading CSVs with DuckDB""")
|
23 |
+
return
|
24 |
+
|
25 |
+
|
26 |
+
@app.cell(hide_code=True)
|
27 |
+
def _(mo):
|
28 |
+
mo.md(
|
29 |
+
r"""
|
30 |
+
<p> I remember when I first learnt about DuckDB, it was a gamechanger — I used to load the data I wanted to work on to a database software like MS SQL Server, and then build a bridge to an IDE with the language I wanted to use like Python, or R; it was quite the hassle. DuckDB changed my whole world — now I could just import the data file into the IDE, or notebook, make a duckdb connection, and there we go! But then, I realized I didn't even need the step of first importing the file using python. I could just query the csv file directly using SQL through a DuckDB connection.</p>
|
31 |
+
|
32 |
+
##Introduction
|
33 |
+
<p> I found this dataset on the evolution of AI research by discipline from <a href= "https://oecd.ai/en/data?selectedArea=ai-research&selectedVisualization=16731"> OECD</a>, and it piqued my interest. I feel like publications in natural language processing drastically jumped in the mid 2010s, and I'm excited to find out if that's the case. </p>
|
34 |
+
|
35 |
+
<p> In this notebook, we'll: </p>
|
36 |
+
<ul>
|
37 |
+
<li> Import the CSV file into the notebook</li>
|
38 |
+
<li> Create another table within the database based on the CSV</li>
|
39 |
+
<li> Dig into publications on natural language processing have evolved over the years</li>
|
40 |
+
</ul>
|
41 |
+
"""
|
42 |
+
)
|
43 |
+
return
|
44 |
+
|
45 |
+
|
46 |
+
@app.cell(hide_code=True)
|
47 |
+
def _(mo):
|
48 |
+
mo.md(r"""##Load the CSV""")
|
49 |
+
return
|
50 |
+
|
51 |
+
|
52 |
+
@app.cell
|
53 |
+
def _(mo):
|
54 |
+
_df = mo.sql(
|
55 |
+
f"""
|
56 |
+
/* Another way to load the CSV could be
|
57 |
+
SELECT *
|
58 |
+
FROM read_csv('https://github.com/Mustjaab/Loading_CSVs_in_DuckDB/blob/main/AI_Research_Data.csv')
|
59 |
+
*/
|
60 |
+
SELECT *
|
61 |
+
FROM "https://raw.githubusercontent.com/Mustjaab/Loading_CSVs_in_DuckDB/refs/heads/main/AI_Research_Data.csv"
|
62 |
+
LIMIT 5;
|
63 |
+
"""
|
64 |
+
)
|
65 |
+
return
|
66 |
+
|
67 |
+
|
68 |
+
@app.cell(hide_code=True)
|
69 |
+
def _(mo):
|
70 |
+
mo.md(r"""##Create Another Table""")
|
71 |
+
return
|
72 |
+
|
73 |
+
|
74 |
+
@app.cell
|
75 |
+
def _(mo):
|
76 |
+
Discipline_Analysis = mo.sql(
|
77 |
+
f"""
|
78 |
+
-- Build a table based on the CSV where it just contains the specified columns
|
79 |
+
CREATE TABLE Domain_Analysis AS
|
80 |
+
SELECT Year, Concept, publications FROM "https://raw.githubusercontent.com/Mustjaab/Loading_CSVs_in_DuckDB/refs/heads/main/AI_Research_Data.csv"
|
81 |
+
"""
|
82 |
+
)
|
83 |
+
return Discipline_Analysis, Domain_Analysis
|
84 |
+
|
85 |
+
|
86 |
+
@app.cell
|
87 |
+
def _(Domain_Analysis, mo):
|
88 |
+
Analysis = mo.sql(
|
89 |
+
f"""
|
90 |
+
SELECT *
|
91 |
+
FROM Domain_Analysis
|
92 |
+
GROUP BY Concept, Year, publications
|
93 |
+
ORDER BY Year
|
94 |
+
"""
|
95 |
+
)
|
96 |
+
return (Analysis,)
|
97 |
+
|
98 |
+
|
99 |
+
@app.cell
|
100 |
+
def _(Domain_Analysis, mo):
|
101 |
+
_df = mo.sql(
|
102 |
+
f"""
|
103 |
+
SELECT
|
104 |
+
AVG(CASE WHEN Year < 2020 THEN publications END) AS avg_pre_2020,
|
105 |
+
AVG(CASE WHEN Year >= 2020 THEN publications END) AS avg_2020_onward
|
106 |
+
FROM Domain_Analysis
|
107 |
+
WHERE Concept = 'Natural language processing';
|
108 |
+
"""
|
109 |
+
)
|
110 |
+
return
|
111 |
+
|
112 |
+
|
113 |
+
@app.cell
|
114 |
+
def _(Domain_Analysis, mo):
|
115 |
+
NLP_Analysis = mo.sql(
|
116 |
+
f"""
|
117 |
+
SELECT
|
118 |
+
publications,
|
119 |
+
CASE
|
120 |
+
WHEN Year < 2020 THEN 'Pre-2020'
|
121 |
+
ELSE '2020-onward'
|
122 |
+
END AS period
|
123 |
+
FROM Domain_Analysis
|
124 |
+
WHERE Year >= 2000
|
125 |
+
AND Concept = 'Natural language processing';
|
126 |
+
""",
|
127 |
+
output=False
|
128 |
+
)
|
129 |
+
return (NLP_Analysis,)
|
130 |
+
|
131 |
+
|
132 |
+
@app.cell
|
133 |
+
def _(NLP_Analysis, px):
|
134 |
+
px.box(NLP_Analysis, x='period', y='publications', color='period')
|
135 |
+
return
|
136 |
+
|
137 |
+
|
138 |
+
@app.cell(hide_code=True)
|
139 |
+
def _(mo):
|
140 |
+
mo.md(r"""<p> We can see there's a significant increase in NLP publications 2020 and onwards which definitely makes sense provided the rapid emergence of commercial large language models, and AI assistants. </p>""")
|
141 |
+
|
142 |
+
@app.cell(hide_code=True)
|
143 |
+
def _(mo):
|
144 |
+
mo.md(
|
145 |
+
r"""
|
146 |
+
##Conclusion
|
147 |
+
<p> In this notebook, we learned how to:</p>
|
148 |
+
<ul>
|
149 |
+
<li> Load a CSV into DuckDB </li>
|
150 |
+
<li> Create other tables using the imported CSV </li>
|
151 |
+
<li> Seamlessly analyze and visualize data between SQL, and Python cells</li>
|
152 |
+
</ul>
|
153 |
+
"""
|
154 |
+
)
|
155 |
+
return
|
156 |
+
|
157 |
+
|
158 |
+
@app.cell
|
159 |
+
def _():
|
160 |
+
import pyarrow
|
161 |
+
import polars
|
162 |
+
return polars, pyarrow
|
163 |
+
|
164 |
+
|
165 |
+
@app.cell
|
166 |
+
def _():
|
167 |
+
import marimo as mo
|
168 |
+
import plotly.express as px
|
169 |
+
return mo, px
|
170 |
+
|
171 |
+
|
172 |
+
if __name__ == "__main__":
|
173 |
+
app.run()
|