# import gradio as gr | |
# import numpy as np | |
# import random | |
# #import spaces #[uncomment to use ZeroGPU] | |
# from diffusers import DiffusionPipeline | |
# import torch | |
# | |
# device = "cuda" if torch.cuda.is_available() else "cpu" | |
# model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use | |
# | |
# if torch.cuda.is_available(): | |
# torch_dtype = torch.float16 | |
# else: | |
# torch_dtype = torch.float32 | |
# | |
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
# pipe = pipe.to(device) | |
# | |
# MAX_SEED = np.iinfo(np.int32).max | |
# MAX_IMAGE_SIZE = 1024 | |
# | |
# #@spaces.GPU #[uncomment to use ZeroGPU] | |
# def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
# | |
# if randomize_seed: | |
# seed = random.randint(0, MAX_SEED) | |
# | |
# generator = torch.Generator().manual_seed(seed) | |
# | |
# image = pipe( | |
# prompt = prompt, | |
# negative_prompt = negative_prompt, | |
# guidance_scale = guidance_scale, | |
# num_inference_steps = num_inference_steps, | |
# width = width, | |
# height = height, | |
# generator = generator | |
# ).images[0] | |
# | |
# return image, seed | |
# | |
# examples = [ | |
# "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", | |
# "An astronaut riding a green horse", | |
# "A delicious ceviche cheesecake slice", | |
# ] | |
# | |
# css=""" | |
# #col-container { | |
# margin: 0 auto; | |
# max-width: 640px; | |
# } | |
# """ | |
# | |
# with gr.Blocks(css=css) as demo: | |
# | |
# with gr.Column(elem_id="col-container"): | |
# gr.Markdown(f""" | |
# # Text-to-Image Gradio Template | |
# """) | |
# | |
# with gr.Row(): | |
# | |
# prompt = gr.Text( | |
# label="Prompt", | |
# show_label=False, | |
# max_lines=1, | |
# placeholder="Enter your prompt", | |
# container=False, | |
# ) | |
# | |
# run_button = gr.Button("Run", scale=0) | |
# | |
# result = gr.Image(label="Result", show_label=False) | |
# | |
# with gr.Accordion("Advanced Settings", open=False): | |
# | |
# negative_prompt = gr.Text( | |
# label="Negative prompt", | |
# max_lines=1, | |
# placeholder="Enter a negative prompt", | |
# visible=False, | |
# ) | |
# | |
# seed = gr.Slider( | |
# label="Seed", | |
# minimum=0, | |
# maximum=MAX_SEED, | |
# step=1, | |
# value=0, | |
# ) | |
# | |
# randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
# | |
# with gr.Row(): | |
# | |
# width = gr.Slider( | |
# label="Width", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, #Replace with defaults that work for your model | |
# ) | |
# | |
# height = gr.Slider( | |
# label="Height", | |
# minimum=256, | |
# maximum=MAX_IMAGE_SIZE, | |
# step=32, | |
# value=1024, #Replace with defaults that work for your model | |
# ) | |
# | |
# with gr.Row(): | |
# | |
# guidance_scale = gr.Slider( | |
# label="Guidance scale", | |
# minimum=0.0, | |
# maximum=10.0, | |
# step=0.1, | |
# value=0.0, #Replace with defaults that work for your model | |
# ) | |
# | |
# num_inference_steps = gr.Slider( | |
# label="Number of inference steps", | |
# minimum=1, | |
# maximum=50, | |
# step=1, | |
# value=2, #Replace with defaults that work for your model | |
# ) | |
# | |
# gr.Examples( | |
# examples = examples, | |
# inputs = [prompt] | |
# ) | |
# gr.on( | |
# triggers=[run_button.click, prompt.submit], | |
# fn = infer, | |
# inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
# outputs = [result, seed] | |
# ) | |
# | |
# demo.queue().launch() | |
import gradio as gr | |
gr.load("models/nerijs/dark-fantasy-illustration-flux").launch() | |