marcusyqy commited on
Commit
b79f4d4
·
1 Parent(s): 0c3a580
Files changed (1) hide show
  1. app.py +144 -141
app.py CHANGED
@@ -1,142 +1,145 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- #import spaces #[uncomment to use ZeroGPU]
5
- from diffusers import DiffusionPipeline
6
- import torch
7
-
8
- device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
10
-
11
- if torch.cuda.is_available():
12
- torch_dtype = torch.float16
13
- else:
14
- torch_dtype = torch.float32
15
-
16
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
- pipe = pipe.to(device)
18
-
19
- MAX_SEED = np.iinfo(np.int32).max
20
- MAX_IMAGE_SIZE = 1024
21
-
22
- #@spaces.GPU #[uncomment to use ZeroGPU]
23
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
- if randomize_seed:
26
- seed = random.randint(0, MAX_SEED)
27
-
28
- generator = torch.Generator().manual_seed(seed)
29
-
30
- image = pipe(
31
- prompt = prompt,
32
- negative_prompt = negative_prompt,
33
- guidance_scale = guidance_scale,
34
- num_inference_steps = num_inference_steps,
35
- width = width,
36
- height = height,
37
- generator = generator
38
- ).images[0]
39
-
40
- return image, seed
41
-
42
- examples = [
43
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
- "An astronaut riding a green horse",
45
- "A delicious ceviche cheesecake slice",
46
- ]
47
-
48
- css="""
49
- #col-container {
50
- margin: 0 auto;
51
- max-width: 640px;
52
- }
53
- """
54
-
55
- with gr.Blocks(css=css) as demo:
56
-
57
- with gr.Column(elem_id="col-container"):
58
- gr.Markdown(f"""
59
- # Text-to-Image Gradio Template
60
- """)
61
-
62
- with gr.Row():
63
-
64
- prompt = gr.Text(
65
- label="Prompt",
66
- show_label=False,
67
- max_lines=1,
68
- placeholder="Enter your prompt",
69
- container=False,
70
- )
71
-
72
- run_button = gr.Button("Run", scale=0)
73
-
74
- result = gr.Image(label="Result", show_label=False)
75
-
76
- with gr.Accordion("Advanced Settings", open=False):
77
-
78
- negative_prompt = gr.Text(
79
- label="Negative prompt",
80
- max_lines=1,
81
- placeholder="Enter a negative prompt",
82
- visible=False,
83
- )
84
-
85
- seed = gr.Slider(
86
- label="Seed",
87
- minimum=0,
88
- maximum=MAX_SEED,
89
- step=1,
90
- value=0,
91
- )
92
-
93
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
-
95
- with gr.Row():
96
-
97
- width = gr.Slider(
98
- label="Width",
99
- minimum=256,
100
- maximum=MAX_IMAGE_SIZE,
101
- step=32,
102
- value=1024, #Replace with defaults that work for your model
103
- )
104
-
105
- height = gr.Slider(
106
- label="Height",
107
- minimum=256,
108
- maximum=MAX_IMAGE_SIZE,
109
- step=32,
110
- value=1024, #Replace with defaults that work for your model
111
- )
112
-
113
- with gr.Row():
114
-
115
- guidance_scale = gr.Slider(
116
- label="Guidance scale",
117
- minimum=0.0,
118
- maximum=10.0,
119
- step=0.1,
120
- value=0.0, #Replace with defaults that work for your model
121
- )
122
-
123
- num_inference_steps = gr.Slider(
124
- label="Number of inference steps",
125
- minimum=1,
126
- maximum=50,
127
- step=1,
128
- value=2, #Replace with defaults that work for your model
129
- )
130
-
131
- gr.Examples(
132
- examples = examples,
133
- inputs = [prompt]
134
- )
135
- gr.on(
136
- triggers=[run_button.click, prompt.submit],
137
- fn = infer,
138
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
- outputs = [result, seed]
140
- )
141
-
142
- demo.queue().launch()
 
1
+ # import gradio as gr
2
+ # import numpy as np
3
+ # import random
4
+ # #import spaces #[uncomment to use ZeroGPU]
5
+ # from diffusers import DiffusionPipeline
6
+ # import torch
7
+ #
8
+ # device = "cuda" if torch.cuda.is_available() else "cpu"
9
+ # model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
10
+ #
11
+ # if torch.cuda.is_available():
12
+ # torch_dtype = torch.float16
13
+ # else:
14
+ # torch_dtype = torch.float32
15
+ #
16
+ # pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
+ # pipe = pipe.to(device)
18
+ #
19
+ # MAX_SEED = np.iinfo(np.int32).max
20
+ # MAX_IMAGE_SIZE = 1024
21
+ #
22
+ # #@spaces.GPU #[uncomment to use ZeroGPU]
23
+ # def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
24
+ #
25
+ # if randomize_seed:
26
+ # seed = random.randint(0, MAX_SEED)
27
+ #
28
+ # generator = torch.Generator().manual_seed(seed)
29
+ #
30
+ # image = pipe(
31
+ # prompt = prompt,
32
+ # negative_prompt = negative_prompt,
33
+ # guidance_scale = guidance_scale,
34
+ # num_inference_steps = num_inference_steps,
35
+ # width = width,
36
+ # height = height,
37
+ # generator = generator
38
+ # ).images[0]
39
+ #
40
+ # return image, seed
41
+ #
42
+ # examples = [
43
+ # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
+ # "An astronaut riding a green horse",
45
+ # "A delicious ceviche cheesecake slice",
46
+ # ]
47
+ #
48
+ # css="""
49
+ # #col-container {
50
+ # margin: 0 auto;
51
+ # max-width: 640px;
52
+ # }
53
+ # """
54
+ #
55
+ # with gr.Blocks(css=css) as demo:
56
+ #
57
+ # with gr.Column(elem_id="col-container"):
58
+ # gr.Markdown(f"""
59
+ # # Text-to-Image Gradio Template
60
+ # """)
61
+ #
62
+ # with gr.Row():
63
+ #
64
+ # prompt = gr.Text(
65
+ # label="Prompt",
66
+ # show_label=False,
67
+ # max_lines=1,
68
+ # placeholder="Enter your prompt",
69
+ # container=False,
70
+ # )
71
+ #
72
+ # run_button = gr.Button("Run", scale=0)
73
+ #
74
+ # result = gr.Image(label="Result", show_label=False)
75
+ #
76
+ # with gr.Accordion("Advanced Settings", open=False):
77
+ #
78
+ # negative_prompt = gr.Text(
79
+ # label="Negative prompt",
80
+ # max_lines=1,
81
+ # placeholder="Enter a negative prompt",
82
+ # visible=False,
83
+ # )
84
+ #
85
+ # seed = gr.Slider(
86
+ # label="Seed",
87
+ # minimum=0,
88
+ # maximum=MAX_SEED,
89
+ # step=1,
90
+ # value=0,
91
+ # )
92
+ #
93
+ # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
+ #
95
+ # with gr.Row():
96
+ #
97
+ # width = gr.Slider(
98
+ # label="Width",
99
+ # minimum=256,
100
+ # maximum=MAX_IMAGE_SIZE,
101
+ # step=32,
102
+ # value=1024, #Replace with defaults that work for your model
103
+ # )
104
+ #
105
+ # height = gr.Slider(
106
+ # label="Height",
107
+ # minimum=256,
108
+ # maximum=MAX_IMAGE_SIZE,
109
+ # step=32,
110
+ # value=1024, #Replace with defaults that work for your model
111
+ # )
112
+ #
113
+ # with gr.Row():
114
+ #
115
+ # guidance_scale = gr.Slider(
116
+ # label="Guidance scale",
117
+ # minimum=0.0,
118
+ # maximum=10.0,
119
+ # step=0.1,
120
+ # value=0.0, #Replace with defaults that work for your model
121
+ # )
122
+ #
123
+ # num_inference_steps = gr.Slider(
124
+ # label="Number of inference steps",
125
+ # minimum=1,
126
+ # maximum=50,
127
+ # step=1,
128
+ # value=2, #Replace with defaults that work for your model
129
+ # )
130
+ #
131
+ # gr.Examples(
132
+ # examples = examples,
133
+ # inputs = [prompt]
134
+ # )
135
+ # gr.on(
136
+ # triggers=[run_button.click, prompt.submit],
137
+ # fn = infer,
138
+ # inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
+ # outputs = [result, seed]
140
+ # )
141
+ #
142
+ # demo.queue().launch()
143
 
144
+ import gradio as gr
145
+ gr.load("models/nerijs/dark-fantasy-illustration-flux").launch()