Spaces:
Sleeping
A newer version of the Streamlit SDK is available:
1.50.0
Contributing to Resume-Matcher on GitHub
Thank you for taking the time to contribute to Resume-Matcher.
We want you to have a great experience making your first contribution.
This contribution could be anything from a small fix to a typo in our documentation or a full feature.
Tell us what you enjoy working on and we would love to help!
If you would like to contribute, but don't know where to start, check the
issues that are labeled
good first issue
or
help wanted.
Contributions make the open-source community a fantastic place to learn, inspire, and create. Any contributions you make are greatly appreciated.
The development branch is main. This is the branch where all pull requests should be made.
Reporting Bugs
Please try to create bug reports that are:
- Reproducible. Include steps to reproduce the problem.
- Specific. Include as much detail as possible: which version, what environment, etc.
- Unique. Do not duplicate existing opened issues.
- Scoped to a Single Bug. One bug per report.
Testing
Please test your changes before submitting the PR.
Good First Issues
We have a list of help wanted and good first issue that contains small features and bugs with a relatively limited scope. Nevertheless, this is a great place to get started, gain experience, and get familiar with our contribution process.
Development
Follow these steps to set up the environment and run the application.
How to install
Fork the repository here.
Clone the forked repository.
git clone https://github.com/<YOUR-USERNAME>/Resume-Matcher.git cd Resume-MatcherCreate a Python Virtual Environment:
Using virtualenv:
Note: Check how to install virtualenv on your system here link.
virtualenv env
OR
Create a Python Virtual Environment:
python -m venv env
Activate the Virtual Environment.
On Windows.
env\Scripts\activateOn macOS and Linux.
source env/bin/activate
OPTIONAL (For pyenv users)
Run the application with pyenv (Refer to this article)
Build dependencies (on ubuntu)
sudo apt-get install -y make build-essential libssl-dev zlib1g-dev libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm libncurses5-dev libncursesw5-dev xz-utils tk-dev libffi-dev liblzma-dev python opensslsudo apt-get install build-essential zlib1g-dev libffi-dev libssl-dev libbz2-dev libreadline-dev libsqlite3-dev liblzma-dev libncurses-dev sudo apt-get install python-tk python3-tk tk-dev sudo apt-get install build-essential zlib1g-dev libffi-dev libssl-dev libbz2-dev libreadline-dev libsqlite3-dev liblzma-dev- pyenv installer
curl https://pyenv.run | bashInstall desired python version
pyenv install -v 3.11.0pyenv with virtual enviroment
pyenv virtualenv 3.11.0 venvActivate virtualenv with pyenv
pyenv activate venv- Install Dependencies:
pip install -r requirements.txtPrepare Data:
- Resumes: Place your resumes in PDF format in the
Data/Resumesfolder. Remove any existing contents in this folder. - Job Descriptions: Place your job descriptions in PDF format in the
Data/JobDescriptionfolder. Remove any existing contents in this folder.
- Resumes: Place your resumes in PDF format in the
Parse Resumes to JSON:
python run_first.py- Run the Application:
streamlit run streamlit_app.py
Note: For local versions, you do not need to run "streamlit_second.py" as it is specifically for deploying to Streamlit servers.
Additional Note: The Vector Similarity part is precomputed to optimize performance due to the resource-intensive nature of sentence encoders that require significant GPU and RAM resources. If you are interested in leveraging this feature in a Google Colab environment for free, refer to the upcoming blog (link to be provided) for further guidance.
Docker
Build the image and start application
docker-compose upOpen
localhost:80on your browser
Running the Web Application
The full stack Next.js (React and FastAPI) web application allows users to interact with the Resume Matcher tool interactively via a web browser.
To run the full stack web application (frontend client and backend api servers), follow the instructions over on the webapp README file.
Code Formatting
This project uses Black for code formatting. We believe this helps to keep the code base consistent and reduces the cognitive load when reading code.
Before submitting your pull request, please make sure your changes are in accordance with the Black style guide. You can format your code by running the following command in your terminal:
black .
Pre-commit Hooks
We also use pre-commit to automatically check for common issues before commits are submitted. This includes checks for code formatting with Black.
If you haven't already, please install the pre-commit hooks by running the following command in your terminal:
pip install pre-commit
pre-commit install
Now, the pre-commit hooks will automatically run every time you commit your changes. If any of the hooks fail, the commit will be aborted.
Join Us, Contribute!
Pull Requests & Issues are not just welcomed, they're celebrated! Let's create together.
π Join our lively Discord community and discuss away!
π‘ Spot a problem? Create an issue!
π©βπ» Dive in and help resolve existing issues.
π Share your thoughts in our Discussions & Announcements.
π Explore and improve our Landing Page. PRs always welcome!
π Contribute to the Resume Matcher Docs and help people get started with using the software.