|
import fastapi |
|
import numpy as np |
|
import torch |
|
import torchaudio |
|
from silero_vad import get_speech_timestamps, load_silero_vad |
|
import whisperx |
|
import edge_tts |
|
import gc |
|
import logging |
|
import time |
|
import os |
|
from openai import AsyncOpenAI |
|
import asyncio |
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
|
|
|
|
app = fastapi.FastAPI() |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
logging.info(f'Using device: {device}') |
|
vad_model = load_silero_vad().to(device) |
|
logging.info('Loaded Silero VAD model') |
|
|
|
|
|
whisper_model = whisperx.load_model("tiny", device, compute_type="float16") |
|
logging.info('Loaded WhisperX model') |
|
|
|
OPENAI_API_KEY = "" |
|
if not OPENAI_API_KEY: |
|
logging.error("OpenAI API key not found. Please set the OPENAI_API_KEY environment variable.") |
|
raise ValueError("OpenAI API key not found.") |
|
logging.info('Initialized OpenAI client') |
|
aclient = AsyncOpenAI(api_key=OPENAI_API_KEY) |
|
|
|
|
|
TTS_VOICE = "en-GB-SoniaNeural" |
|
|
|
|
|
def check_vad(audio_data, sample_rate): |
|
logging.info('Checking voice activity') |
|
target_sample_rate = 16000 |
|
if sample_rate != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate) |
|
audio_tensor = resampler(torch.from_numpy(audio_data)) |
|
else: |
|
audio_tensor = torch.from_numpy(audio_data) |
|
audio_tensor = audio_tensor.to(device) |
|
|
|
speech_timestamps = get_speech_timestamps(audio_tensor, vad_model, sampling_rate=target_sample_rate) |
|
logging.info(f'Found {len(speech_timestamps)} speech timestamps') |
|
return len(speech_timestamps) > 0 |
|
|
|
|
|
def transcript_sync(audio_data, sample_rate): |
|
logging.info('Transcribing audio') |
|
target_sample_rate = 16000 |
|
if sample_rate != target_sample_rate: |
|
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate) |
|
audio_data = resampler(torch.from_numpy(audio_data)).numpy() |
|
else: |
|
audio_data = audio_data |
|
|
|
batch_size = 16 |
|
result = whisper_model.transcribe(audio_data, batch_size=batch_size) |
|
text = result["segments"][0]["text"] if len(result["segments"]) > 0 else "" |
|
logging.info(f'Transcription result: {text}') |
|
del result |
|
gc.collect() |
|
if device == 'cuda': |
|
torch.cuda.empty_cache() |
|
return text |
|
|
|
async def transcript(audio_data, sample_rate): |
|
loop = asyncio.get_running_loop() |
|
text = await loop.run_in_executor(None, transcript_sync, audio_data, sample_rate) |
|
return text |
|
|
|
|
|
async def llm(text): |
|
logging.info('Getting response from OpenAI API') |
|
response = await aclient.chat.completions.create(model="gpt-4", |
|
messages=[ |
|
{"role": "system", "content": "You respond to the following transcript from the conversation that you are having with the user."}, |
|
{"role": "user", "content": text} |
|
], |
|
stream=True, |
|
temperature=0.7, |
|
top_p=0.9) |
|
async for chunk in response: |
|
yield chunk.choices[0].delta.content |
|
|
|
|
|
async def tts_streaming(text_stream): |
|
logging.info('Performing TTS') |
|
buffer = "" |
|
punctuation = {'.', '!', '?'} |
|
for text_chunk in text_stream: |
|
if text_chunk is not None: |
|
buffer += text_chunk |
|
|
|
sentences = [] |
|
start = 0 |
|
for i, char in enumerate(buffer): |
|
if char in punctuation: |
|
sentences.append(buffer[start:i+1].strip()) |
|
start = i+1 |
|
buffer = buffer[start:] |
|
|
|
for sentence in sentences: |
|
if sentence: |
|
communicate = edge_tts.Communicate(sentence, TTS_VOICE) |
|
async for chunk in communicate.stream(): |
|
if chunk["type"] == "audio": |
|
yield chunk["data"] |
|
|
|
if buffer.strip(): |
|
communicate = edge_tts.Communicate(buffer.strip(), TTS_VOICE) |
|
async for chunk in communicate.stream(): |
|
if chunk["type"] == "audio": |
|
yield chunk["data"] |
|
|
|
class Conversation: |
|
def __init__(self): |
|
self.mode = 'idle' |
|
self.chunk_queue = [] |
|
self.transcription = '' |
|
self.in_transcription = False |
|
self.previous_no_vad_audio = None |
|
self.llm_task = None |
|
self.transcription_task = None |
|
self.stop_signal = False |
|
self.sample_rate = 16000 |
|
self.instream = None |
|
|
|
async def process_audio(self, audio_chunk): |
|
sample_rate, audio_data = audio_chunk |
|
self.sample_rate = sample_rate |
|
audio_data = np.array(audio_data, dtype=np.float32) |
|
|
|
|
|
if audio_data.ndim > 1: |
|
audio_data = np.mean(audio_data, axis=1) |
|
|
|
|
|
vad = check_vad(audio_data, sample_rate) |
|
|
|
if vad: |
|
logging.info(f'Voice activity detected in mode: {self.mode}') |
|
if self.mode == 'idle': |
|
self.mode = 'listening' |
|
elif self.mode == 'speaking': |
|
|
|
if self.llm_task and not self.llm_task.done(): |
|
logging.info('Stopping LLM and TTS tasks') |
|
self.stop_signal = True |
|
await self.llm_task |
|
self.mode = 'listening' |
|
|
|
if self.mode == 'listening': |
|
if self.previous_no_vad_audio is not None: |
|
self.chunk_queue.append(self.previous_no_vad_audio) |
|
self.previous_no_vad_audio = None |
|
|
|
self.chunk_queue.append(audio_data) |
|
|
|
|
|
if not self.in_transcription: |
|
self.in_transcription = True |
|
self.transcription_task = asyncio.create_task(self.transcript_loop()) |
|
|
|
else: |
|
logging.info(f'No voice activity detected in mode: {self.mode}') |
|
if self.mode == 'listening': |
|
|
|
self.chunk_queue.append(audio_data) |
|
|
|
|
|
self.mode = 'processing' |
|
|
|
|
|
while self.in_transcription: |
|
await asyncio.sleep(0.1) |
|
|
|
|
|
if len(self.chunk_queue) == 0: |
|
|
|
if not self.llm_task or self.llm_task.done(): |
|
self.stop_signal = False |
|
self.llm_task = self.llm_and_tts() |
|
self.mode = 'responding' |
|
|
|
if self.mode == 'responding': |
|
async for audio_chunk in self.llm_task: |
|
if self.instream is None: |
|
self.instream = audio_chunk |
|
else: |
|
self.instream = np.concatenate((self.instream, audio_chunk)) |
|
|
|
yield self.instream |
|
|
|
|
|
self.llm_task = None |
|
self.transcription = '' |
|
self.mode = 'idle' |
|
self.instream = None |
|
|
|
|
|
self.previous_no_vad_audio = audio_data |
|
|
|
async def transcript_loop(self): |
|
while True: |
|
if len(self.chunk_queue) > 0: |
|
accumulated_audio = np.concatenate(self.chunk_queue) |
|
total_samples = len(accumulated_audio) |
|
total_duration = total_samples / self.sample_rate |
|
|
|
if total_duration > 3.0 and self.in_transcription == True: |
|
first_two_seconds_samples = int(2.0 * self.sample_rate) |
|
first_two_seconds_audio = accumulated_audio[:first_two_seconds_samples] |
|
transcribed_text = await transcript(first_two_seconds_audio, self.sample_rate) |
|
self.transcription += transcribed_text |
|
remaining_audio = accumulated_audio[first_two_seconds_samples:] |
|
self.chunk_queue = [remaining_audio] |
|
else: |
|
transcribed_text = await transcript(accumulated_audio, self.sample_rate) |
|
self.transcription += transcribed_text |
|
self.chunk_queue = [] |
|
self.in_transcription = False |
|
else: |
|
await asyncio.sleep(0.1) |
|
|
|
if len(self.chunk_queue) == 0 and self.mode in ['idle', 'processing']: |
|
self.in_transcription = False |
|
break |
|
|
|
async def llm_and_tts(self): |
|
logging.info('Handling LLM and TTS') |
|
async for text_chunk in llm(self.transcription): |
|
if self.stop_signal: |
|
logging.info('LLM and TTS task stopped') |
|
break |
|
async for audio_chunk in tts_streaming([text_chunk]): |
|
if self.stop_signal: |
|
logging.info('LLM and TTS task stopped during TTS') |
|
break |
|
yield np.frombuffer(audio_chunk, dtype=np.int16) |
|
|
|
@app.websocket('/ws') |
|
async def websocket_endpoint(websocket: fastapi.WebSocket): |
|
await websocket.accept() |
|
logging.info('WebSocket connection established') |
|
conversation = Conversation() |
|
audio_buffer = [] |
|
buffer_duration = 0.5 |
|
try: |
|
while True: |
|
audio_chunk_bytes = await websocket.receive_bytes() |
|
if audio_chunk_bytes is None: |
|
break |
|
|
|
audio_chunk = (conversation.sample_rate, np.frombuffer(audio_chunk_bytes, dtype=np.int16)) |
|
audio_buffer.append(audio_chunk[1]) |
|
|
|
|
|
total_samples = sum(len(chunk) for chunk in audio_buffer) |
|
total_duration = total_samples / conversation.sample_rate |
|
|
|
if total_duration >= buffer_duration: |
|
|
|
buffered_audio = np.concatenate(audio_buffer) |
|
audio_buffer = [] |
|
|
|
|
|
async for audio_data in conversation.process_audio((conversation.sample_rate, buffered_audio)): |
|
if audio_data is not None: |
|
await websocket.send_bytes(audio_data.tobytes()) |
|
except Exception as e: |
|
logging.error(f'WebSocket error: {e}') |
|
finally: |
|
logging.info('WebSocket connection closed') |
|
await websocket.close() |
|
|
|
@app.get('/') |
|
def index(): |
|
return fastapi.responses.FileResponse('index.html') |
|
|
|
if __name__ == '__main__': |
|
import uvicorn |
|
uvicorn.run(app, host='0.0.0.0', port=8000) |
|
|