manavshekar3340 commited on
Commit
bd6c370
1 Parent(s): 40fdaeb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -1,30 +1,30 @@
1
  import gradio as gr
2
  from PIL import Image
3
- import requests
4
 
5
  # Load the pre-trained model from Hugging Face
6
  model = gr.load("models/dima806/indian_food_image_detection")
7
 
8
  def classify_image(image):
9
- # Convert PIL image to the format expected by the model
10
- image = Image.fromarray(image)
 
11
  result = model(image)
12
 
13
  # Parse the result to the format expected by Gradio's label component
14
- predictions = result[0]["labels"] # Adjust this line based on the actual output structure
15
  formatted_result = {pred["label"]: pred["score"] for pred in predictions}
16
-
17
  return formatted_result
18
 
19
  # Create a Gradio interface with the custom title
20
  iface = gr.Interface(
21
  fn=classify_image,
22
- inputs=gr.Image(type="numpy"),
23
- outputs=gr.Label(),
24
  title="CAPSTONE",
25
- description="Upload an image of Indian food to detect what it is.",
26
- live=True # Enable live processing
27
  )
28
 
29
  # Launch the Gradio interface
30
- iface.launch(share=True)
 
1
  import gradio as gr
2
  from PIL import Image
3
+ import numpy as np
4
 
5
  # Load the pre-trained model from Hugging Face
6
  model = gr.load("models/dima806/indian_food_image_detection")
7
 
8
  def classify_image(image):
9
+ # Ensure the image is in the correct format for the model
10
+ if isinstance(image, np.ndarray):
11
+ image = Image.fromarray(image)
12
  result = model(image)
13
 
14
  # Parse the result to the format expected by Gradio's label component
15
+ predictions = result[0] # Adjust this line based on the actual output structure
16
  formatted_result = {pred["label"]: pred["score"] for pred in predictions}
17
+
18
  return formatted_result
19
 
20
  # Create a Gradio interface with the custom title
21
  iface = gr.Interface(
22
  fn=classify_image,
23
+ inputs=gr.Image(type="numpy", label="Upload an image"),
24
+ outputs=gr.Label(label="Prediction"),
25
  title="CAPSTONE",
26
+ description="Upload an image of Indian food to detect what it is."
 
27
  )
28
 
29
  # Launch the Gradio interface
30
+ iface.launch()