manavshekar3340 commited on
Commit
40fdaeb
1 Parent(s): 58fdc79

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -5
app.py CHANGED
@@ -1,16 +1,30 @@
1
  import gradio as gr
 
 
2
 
3
  # Load the pre-trained model from Hugging Face
4
  model = gr.load("models/dima806/indian_food_image_detection")
5
 
 
 
 
 
 
 
 
 
 
 
 
6
  # Create a Gradio interface with the custom title
7
  iface = gr.Interface(
8
- fn=model,
9
- inputs=gr.Image(type="filepath"),
10
- outputs="label",
11
  title="CAPSTONE",
12
- description="Upload an image of Indian food to detect what it is."
 
13
  )
14
 
15
  # Launch the Gradio interface
16
- iface.launch()
 
1
  import gradio as gr
2
+ from PIL import Image
3
+ import requests
4
 
5
  # Load the pre-trained model from Hugging Face
6
  model = gr.load("models/dima806/indian_food_image_detection")
7
 
8
+ def classify_image(image):
9
+ # Convert PIL image to the format expected by the model
10
+ image = Image.fromarray(image)
11
+ result = model(image)
12
+
13
+ # Parse the result to the format expected by Gradio's label component
14
+ predictions = result[0]["labels"] # Adjust this line based on the actual output structure
15
+ formatted_result = {pred["label"]: pred["score"] for pred in predictions}
16
+
17
+ return formatted_result
18
+
19
  # Create a Gradio interface with the custom title
20
  iface = gr.Interface(
21
+ fn=classify_image,
22
+ inputs=gr.Image(type="numpy"),
23
+ outputs=gr.Label(),
24
  title="CAPSTONE",
25
+ description="Upload an image of Indian food to detect what it is.",
26
+ live=True # Enable live processing
27
  )
28
 
29
  # Launch the Gradio interface
30
+ iface.launch(share=True)