Spaces:
Build error
Build error
| import timm | |
| import torch | |
| from torch import nn | |
| import albumentations | |
| from PIL import Image | |
| import numpy as np | |
| augmentations = albumentations.Compose( | |
| [ | |
| albumentations.Normalize( | |
| mean=[0.485, 0.456, 0.406], | |
| std=[0.229, 0.224, 0.225], | |
| max_pixel_value=255.0, | |
| always_apply=True | |
| ) | |
| ] | |
| ) | |
| target_map = { | |
| 0: 'Cranberry', | |
| 1: 'Musk melon', | |
| 2: 'Pineapple', | |
| 3: 'Watermelon', | |
| 4: 'Orange', | |
| 5: 'Dragon fruit', | |
| 6: 'Bananas', | |
| 7: 'Blue berries', | |
| 8: 'Jack fruit', | |
| 9: 'Avacados', | |
| } | |
| class ImageModelInfer(nn.Module): | |
| def __init__(self, model_path, num_classes): | |
| super().__init__() | |
| model_path = model_path | |
| self.model = timm.create_model(model_path, pretrained=False, num_classes=num_classes) | |
| def forward(self, data): | |
| logits = self.model(data) | |
| return logits | |
| def prepare_image(image): | |
| # image = Image.open(image) | |
| # image = image.convert("RGB") | |
| # image = image.resize((256, 256), resample=Image.BILINEAR) | |
| image = np.array(image) | |
| augmented = augmentations(image=image) | |
| image = augmented['image'] | |
| image = np.transpose(image, (2, 0, 1)).astype(np.float32) | |
| return torch.tensor(image, dtype=torch.float) | |
| def predict_fruit_type(img): | |
| img = prepare_image(img) | |
| prediction = model(img.unsqueeze(0))[0].detach().numpy() | |
| class_ = np.argmax(prediction) | |
| return target_map[class_] | |
| model = ImageModelInfer('vgg16', num_classes=10) | |
| model.load_state_dict(torch.load('best_loss_0.ckpt', map_location=torch.device('cpu'))['state_dict']); |