manan commited on
Commit
ae48a6b
·
1 Parent(s): 28229e3

Upload model.py

Browse files
Files changed (1) hide show
  1. model.py +64 -0
model.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import timm
2
+ import torch
3
+ from torch import nn
4
+ import albumentations
5
+ from PIL import Image
6
+ import numpy as np
7
+
8
+ augmentations = albumentations.Compose(
9
+ [
10
+ albumentations.Normalize(
11
+ mean=[0.485, 0.456, 0.406],
12
+ std=[0.229, 0.224, 0.225],
13
+ max_pixel_value=255.0,
14
+ always_apply=True
15
+ )
16
+ ]
17
+ )
18
+
19
+ target_map = {
20
+ 0: 'Cranberry',
21
+ 1: 'Musk melon',
22
+ 2: 'Pineapple',
23
+ 3: 'Watermelon',
24
+ 4: 'Orange',
25
+ 5: 'Dragon fruit',
26
+ 6: 'Bananas',
27
+ 7: 'Blue berries',
28
+ 8: 'Jack fruit',
29
+ 9: 'Avacados',
30
+ }
31
+
32
+
33
+
34
+ class ImageModelInfer(nn.Module):
35
+ def __init__(self, model_path, num_classes):
36
+ super().__init__()
37
+ model_path = model_path
38
+ self.model = timm.create_model(model_path, pretrained=False, num_classes=num_classes)
39
+
40
+ def forward(self, data):
41
+ logits = self.model(data)
42
+ return logits
43
+
44
+
45
+ def prepare_image(image):
46
+ # image = Image.open(image)
47
+ # image = image.convert("RGB")
48
+ # image = image.resize((256, 256), resample=Image.BILINEAR)
49
+ image = np.array(image)
50
+ augmented = augmentations(image=image)
51
+ image = augmented['image']
52
+ image = np.transpose(image, (2, 0, 1)).astype(np.float32)
53
+ return torch.tensor(image, dtype=torch.float)
54
+
55
+
56
+ def predict_fruit_type(img):
57
+ img = prepare_image(img)
58
+ prediction = model(img.unsqueeze(0))[0].detach().numpy()
59
+ class_ = np.argmax(prediction)
60
+ return target_map[class_]
61
+
62
+
63
+ model = ImageModelInfer('vgg16', num_classes=10)
64
+ model.load_state_dict(torch.load('best_loss_0.ckpt', map_location=torch.device('cpu'))['state_dict']);