Spaces:
Sleeping
Sleeping
# YOLOR PyTorch utils | |
import datetime | |
import logging | |
import math | |
import os | |
import platform | |
import subprocess | |
import time | |
from contextlib import contextmanager | |
from copy import deepcopy | |
from pathlib import Path | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision | |
try: | |
import thop # for FLOPS computation | |
except ImportError: | |
thop = None | |
logger = logging.getLogger(__name__) | |
def torch_distributed_zero_first(local_rank: int): | |
""" | |
Decorator to make all processes in distributed training wait for each local_master to do something. | |
""" | |
if local_rank not in [-1, 0]: | |
torch.distributed.barrier() | |
yield | |
if local_rank == 0: | |
torch.distributed.barrier() | |
def init_torch_seeds(seed=0): | |
# Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html | |
torch.manual_seed(seed) | |
if seed == 0: # slower, more reproducible | |
cudnn.benchmark, cudnn.deterministic = False, True | |
else: # faster, less reproducible | |
cudnn.benchmark, cudnn.deterministic = True, False | |
def date_modified(path=__file__): | |
# return human-readable file modification date, i.e. '2021-3-26' | |
t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime) | |
return f'{t.year}-{t.month}-{t.day}' | |
def git_describe(path=Path(__file__).parent): # path must be a directory | |
# return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe | |
s = f'git -C {path} describe --tags --long --always' | |
try: | |
return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1] | |
except subprocess.CalledProcessError as e: | |
return '' # not a git repository | |
def select_device(device='', batch_size=None): | |
# device = 'cpu' or '0' or '0,1,2,3' | |
s = f'YOLOR 🚀 {git_describe() or date_modified()} torch {torch.__version__} ' # string | |
cpu = device.lower() == 'cpu' | |
if cpu: | |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False | |
elif device: # non-cpu device requested | |
os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable | |
assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device} requested' # check availability | |
cuda = not cpu and torch.cuda.is_available() | |
if cuda: | |
n = torch.cuda.device_count() | |
if n > 1 and batch_size: # check that batch_size is compatible with device_count | |
assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' | |
space = ' ' * len(s) | |
for i, d in enumerate(device.split(',') if device else range(n)): | |
p = torch.cuda.get_device_properties(i) | |
s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2}MB)\n" # bytes to MB | |
else: | |
s += 'CPU\n' | |
logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe | |
return torch.device('cuda:0' if cuda else 'cpu') | |
def time_synchronized(): | |
# pytorch-accurate time | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
return time.time() | |
def profile(x, ops, n=100, device=None): | |
# profile a pytorch module or list of modules. Example usage: | |
# x = torch.randn(16, 3, 640, 640) # input | |
# m1 = lambda x: x * torch.sigmoid(x) | |
# m2 = nn.SiLU() | |
# profile(x, [m1, m2], n=100) # profile speed over 100 iterations | |
device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | |
x = x.to(device) | |
x.requires_grad = True | |
print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '') | |
print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}") | |
for m in ops if isinstance(ops, list) else [ops]: | |
m = m.to(device) if hasattr(m, 'to') else m # device | |
m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m # type | |
dtf, dtb, t = 0., 0., [0., 0., 0.] # dt forward, backward | |
try: | |
flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPS | |
except: | |
flops = 0 | |
for _ in range(n): | |
t[0] = time_synchronized() | |
y = m(x) | |
t[1] = time_synchronized() | |
try: | |
_ = y.sum().backward() | |
t[2] = time_synchronized() | |
except: # no backward method | |
t[2] = float('nan') | |
dtf += (t[1] - t[0]) * 1000 / n # ms per op forward | |
dtb += (t[2] - t[1]) * 1000 / n # ms per op backward | |
s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' | |
s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' | |
p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters | |
print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}') | |
def is_parallel(model): | |
return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) | |
def intersect_dicts(da, db, exclude=()): | |
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values | |
return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} | |
def initialize_weights(model): | |
for m in model.modules(): | |
t = type(m) | |
if t is nn.Conv2d: | |
pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') | |
elif t is nn.BatchNorm2d: | |
m.eps = 1e-3 | |
m.momentum = 0.03 | |
elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]: | |
m.inplace = True | |
def find_modules(model, mclass=nn.Conv2d): | |
# Finds layer indices matching module class 'mclass' | |
return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] | |
def sparsity(model): | |
# Return global model sparsity | |
a, b = 0., 0. | |
for p in model.parameters(): | |
a += p.numel() | |
b += (p == 0).sum() | |
return b / a | |
def prune(model, amount=0.3): | |
# Prune model to requested global sparsity | |
import torch.nn.utils.prune as prune | |
print('Pruning model... ', end='') | |
for name, m in model.named_modules(): | |
if isinstance(m, nn.Conv2d): | |
prune.l1_unstructured(m, name='weight', amount=amount) # prune | |
prune.remove(m, 'weight') # make permanent | |
print(' %.3g global sparsity' % sparsity(model)) | |
def fuse_conv_and_bn(conv, bn): | |
# Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ | |
fusedconv = nn.Conv2d(conv.in_channels, | |
conv.out_channels, | |
kernel_size=conv.kernel_size, | |
stride=conv.stride, | |
padding=conv.padding, | |
groups=conv.groups, | |
bias=True).requires_grad_(False).to(conv.weight.device) | |
# prepare filters | |
w_conv = conv.weight.clone().view(conv.out_channels, -1) | |
w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) | |
fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) | |
# prepare spatial bias | |
b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias | |
b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) | |
fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) | |
return fusedconv | |
def model_info(model, verbose=False, img_size=640): | |
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] | |
n_p = sum(x.numel() for x in model.parameters()) # number parameters | |
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients | |
if verbose: | |
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma')) | |
for i, (name, p) in enumerate(model.named_parameters()): | |
name = name.replace('module_list.', '') | |
print('%5g %40s %9s %12g %20s %10.3g %10.3g' % | |
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) | |
try: # FLOPS | |
from thop import profile | |
stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 | |
img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input | |
flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPS | |
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float | |
fs = ', %.1f GFLOPS' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPS | |
except (ImportError, Exception): | |
fs = '' | |
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") | |
def load_classifier(name='resnet101', n=2): | |
# Loads a pretrained model reshaped to n-class output | |
model = torchvision.models.__dict__[name](pretrained=True) | |
# ResNet model properties | |
# input_size = [3, 224, 224] | |
# input_space = 'RGB' | |
# input_range = [0, 1] | |
# mean = [0.485, 0.456, 0.406] | |
# std = [0.229, 0.224, 0.225] | |
# Reshape output to n classes | |
filters = model.fc.weight.shape[1] | |
model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True) | |
model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True) | |
model.fc.out_features = n | |
return model | |
def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) | |
# scales img(bs,3,y,x) by ratio constrained to gs-multiple | |
if ratio == 1.0: | |
return img | |
else: | |
h, w = img.shape[2:] | |
s = (int(h * ratio), int(w * ratio)) # new size | |
img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize | |
if not same_shape: # pad/crop img | |
h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)] | |
return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean | |
def copy_attr(a, b, include=(), exclude=()): | |
# Copy attributes from b to a, options to only include [...] and to exclude [...] | |
for k, v in b.__dict__.items(): | |
if (len(include) and k not in include) or k.startswith('_') or k in exclude: | |
continue | |
else: | |
setattr(a, k, v) | |
class ModelEMA: | |
""" Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models | |
Keep a moving average of everything in the model state_dict (parameters and buffers). | |
This is intended to allow functionality like | |
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage | |
A smoothed version of the weights is necessary for some training schemes to perform well. | |
This class is sensitive where it is initialized in the sequence of model init, | |
GPU assignment and distributed training wrappers. | |
""" | |
def __init__(self, model, decay=0.9999, updates=0): | |
# Create EMA | |
self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA | |
# if next(model.parameters()).device.type != 'cpu': | |
# self.ema.half() # FP16 EMA | |
self.updates = updates # number of EMA updates | |
self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) | |
for p in self.ema.parameters(): | |
p.requires_grad_(False) | |
def update(self, model): | |
# Update EMA parameters | |
with torch.no_grad(): | |
self.updates += 1 | |
d = self.decay(self.updates) | |
msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict | |
for k, v in self.ema.state_dict().items(): | |
if v.dtype.is_floating_point: | |
v *= d | |
v += (1. - d) * msd[k].detach() | |
def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): | |
# Update EMA attributes | |
copy_attr(self.ema, model, include, exclude) | |
class BatchNormXd(torch.nn.modules.batchnorm._BatchNorm): | |
def _check_input_dim(self, input): | |
# The only difference between BatchNorm1d, BatchNorm2d, BatchNorm3d, etc | |
# is this method that is overwritten by the sub-class | |
# This original goal of this method was for tensor sanity checks | |
# If you're ok bypassing those sanity checks (eg. if you trust your inference | |
# to provide the right dimensional inputs), then you can just use this method | |
# for easy conversion from SyncBatchNorm | |
# (unfortunately, SyncBatchNorm does not store the original class - if it did | |
# we could return the one that was originally created) | |
return | |
def revert_sync_batchnorm(module): | |
# this is very similar to the function that it is trying to revert: | |
# https://github.com/pytorch/pytorch/blob/c8b3686a3e4ba63dc59e5dcfe5db3430df256833/torch/nn/modules/batchnorm.py#L679 | |
module_output = module | |
if isinstance(module, torch.nn.modules.batchnorm.SyncBatchNorm): | |
new_cls = BatchNormXd | |
module_output = BatchNormXd(module.num_features, | |
module.eps, module.momentum, | |
module.affine, | |
module.track_running_stats) | |
if module.affine: | |
with torch.no_grad(): | |
module_output.weight = module.weight | |
module_output.bias = module.bias | |
module_output.running_mean = module.running_mean | |
module_output.running_var = module.running_var | |
module_output.num_batches_tracked = module.num_batches_tracked | |
if hasattr(module, "qconfig"): | |
module_output.qconfig = module.qconfig | |
for name, child in module.named_children(): | |
module_output.add_module(name, revert_sync_batchnorm(child)) | |
del module | |
return module_output | |
class TracedModel(nn.Module): | |
def __init__(self, model=None, device=None, img_size=(640,640)): | |
super(TracedModel, self).__init__() | |
print(" Convert model to Traced-model... ") | |
self.stride = model.stride | |
self.names = model.names | |
self.model = model | |
self.model = revert_sync_batchnorm(self.model) | |
self.model.to('cpu') | |
self.model.eval() | |
self.detect_layer = self.model.model[-1] | |
self.model.traced = True | |
rand_example = torch.rand(1, 3, img_size, img_size) | |
traced_script_module = torch.jit.trace(self.model, rand_example, strict=False) | |
#traced_script_module = torch.jit.script(self.model) | |
traced_script_module.save("traced_model.pt") | |
print(" traced_script_module saved! ") | |
self.model = traced_script_module | |
self.model.to(device) | |
self.detect_layer.to(device) | |
print(" model is traced! \n") | |
def forward(self, x, augment=False, profile=False): | |
out = self.model(x) | |
out = self.detect_layer(out) | |
return out |