RuinedFooocus / superprompter /superprompter.py
malizec's picture
Upload folder using huggingface_hub
2de3774 verified
#!/usr/bin/env python
import os
import random
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration
from superprompter.download_models import download_models
from pathlib import Path
global tokenizer, model
script_dir = Path(__file__).resolve().parent # Script directory
modelDir = script_dir / "model_files"
def load_models():
if not os.path.isdir(modelDir):
print("Model files not found. Downloading...\n")
download_models(modelDir)
global tokenizer, model
tokenizer = T5Tokenizer.from_pretrained(modelDir)
model = T5ForConditionalGeneration.from_pretrained(
modelDir, torch_dtype=torch.float16
)
def unload_models():
global tokenizer, model
del tokenizer
del model
for file in os.listdir(modelDir):
os.remove(os.path.join(modelDir, file))
os.rmdir(modelDir)
def answer(
input_text="",
max_new_tokens=512,
repetition_penalty=1.2,
temperature=0.5,
top_p=1,
top_k=1,
seed=-1,
):
if seed == -1:
seed = random.randint(1, 1000000)
torch.manual_seed(seed)
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
if torch.cuda.is_available():
model.to("cuda")
outputs = model.generate(
input_ids,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
)
dirty_text = tokenizer.decode(outputs[0])
text = dirty_text.replace("<pad>", "").replace("</s>", "").strip()
return text