Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,78 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
from peft import PeftModel
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Model loading
|
7 |
-
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit"
|
8 |
-
adapter_name = "adarsh3601/my_gemma3_pt"
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
# Load
|
|
|
12 |
base_model = AutoModelForCausalLM.from_pretrained(
|
13 |
base_model_name,
|
14 |
-
device_map="auto",
|
15 |
-
torch_dtype=torch.
|
16 |
-
load_in_4bit=True
|
17 |
)
|
18 |
|
19 |
-
# Load
|
20 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
21 |
-
|
22 |
-
# Load fine-tuned adapter
|
23 |
model = PeftModel.from_pretrained(base_model, adapter_name)
|
24 |
model.to(device)
|
25 |
|
26 |
-
#
|
|
|
|
|
|
|
27 |
def chat(message):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
try:
|
29 |
-
#
|
30 |
-
|
31 |
|
32 |
-
#
|
33 |
-
outputs
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
temperature=0.7,
|
38 |
-
top_p=0.95
|
39 |
-
)
|
40 |
-
|
41 |
-
# Decode output
|
42 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
-
return response
|
44 |
|
45 |
except Exception as e:
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
iface.launch()
|
|
|
1 |
import torch
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
from peft import PeftModel
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Set the environment variable for debugging (you can remove this in production)
|
7 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
8 |
+
|
9 |
+
# Load model and tokenizer
|
10 |
+
base_model_name = "adarsh3601/my_gemma_pt3"
|
11 |
+
adapter_name = "your_adapter_name_here" # Replace with actual adapter name if needed
|
12 |
|
|
|
|
|
|
|
13 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
|
15 |
+
# Load the tokenizer and model
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
17 |
base_model = AutoModelForCausalLM.from_pretrained(
|
18 |
base_model_name,
|
19 |
+
device_map="auto", # Using device_map="auto" for automatic GPU assignment
|
20 |
+
torch_dtype=torch.float32, # Switch to float32 to avoid precision issues
|
21 |
+
load_in_4bit=True # This should still be set if your model supports it
|
22 |
)
|
23 |
|
24 |
+
# Load the adapter model
|
|
|
|
|
|
|
25 |
model = PeftModel.from_pretrained(base_model, adapter_name)
|
26 |
model.to(device)
|
27 |
|
28 |
+
# Ensure the model is in evaluation mode
|
29 |
+
model.eval()
|
30 |
+
|
31 |
+
# Chat function with added input/output validation
|
32 |
def chat(message):
|
33 |
+
# Tokenize input message
|
34 |
+
inputs = tokenizer(message, return_tensors="pt")
|
35 |
+
|
36 |
+
# Check if any input token contains NaN or Inf
|
37 |
+
if torch.any(torch.isnan(inputs['input_ids'])) or torch.any(torch.isinf(inputs['input_ids'])):
|
38 |
+
return "Input contains invalid values (NaN or Inf). Please check the input."
|
39 |
+
|
40 |
+
# Move tensors to the correct device
|
41 |
+
inputs = {k: v.to(device).half() for k, v in inputs.items()} # Using half precision for performance
|
42 |
+
|
43 |
try:
|
44 |
+
# Generate response
|
45 |
+
outputs = model.generate(**inputs, max_new_tokens=150, do_sample=True)
|
46 |
|
47 |
+
# Check for NaNs or Infs in the output
|
48 |
+
if torch.any(torch.isnan(outputs)) or torch.any(torch.isinf(outputs)):
|
49 |
+
return "Model output contains invalid values (NaN or Inf). Please try again."
|
50 |
+
|
51 |
+
# Decode the response
|
|
|
|
|
|
|
|
|
|
|
52 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
53 |
|
54 |
except Exception as e:
|
55 |
+
# Catch any errors that occur during generation and return them
|
56 |
+
response = f"Unexpected error: {str(e)}"
|
57 |
+
|
58 |
+
return response
|
59 |
+
|
60 |
+
# Gradio interface for the chat
|
61 |
+
import gradio as gr
|
62 |
+
|
63 |
+
def gradio_interface():
|
64 |
+
with gr.Blocks() as demo:
|
65 |
+
gr.Markdown("## Chat with Gemma Model")
|
66 |
+
|
67 |
+
with gr.Row():
|
68 |
+
message_input = gr.Textbox(label="Input Message")
|
69 |
+
output = gr.Textbox(label="Model Response")
|
70 |
+
|
71 |
+
# Button to trigger the chat
|
72 |
+
button = gr.Button("Generate Response")
|
73 |
+
button.click(fn=chat, inputs=message_input, outputs=output)
|
74 |
+
|
75 |
+
demo.launch()
|
76 |
|
77 |
+
if __name__ == "__main__":
|
78 |
+
gradio_interface()
|
|