Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -3,11 +3,12 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
3 |
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
|
6 |
-
#
|
7 |
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit"
|
8 |
adapter_name = "adarsh3601/my_gemma3_pt"
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
11 |
base_model = AutoModelForCausalLM.from_pretrained(
|
12 |
base_model_name,
|
13 |
device_map="auto",
|
@@ -15,44 +16,36 @@ base_model = AutoModelForCausalLM.from_pretrained(
|
|
15 |
load_in_4bit=True
|
16 |
)
|
17 |
|
|
|
18 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
|
|
|
|
19 |
model = PeftModel.from_pretrained(base_model, adapter_name)
|
20 |
model.to(device)
|
21 |
|
22 |
-
# Chat function
|
23 |
def chat(message):
|
24 |
-
if not message or not message.strip():
|
25 |
-
return "Please enter a message."
|
26 |
-
|
27 |
try:
|
28 |
-
# Tokenize
|
29 |
-
inputs = tokenizer(message, return_tensors="pt")
|
30 |
-
|
31 |
-
|
32 |
-
# Cast to float16 only if model is on CUDA
|
33 |
-
if device == "cuda":
|
34 |
-
inputs = {k: v.half() for k, v in inputs.items()}
|
35 |
-
|
36 |
-
# Generate
|
37 |
outputs = model.generate(
|
38 |
**inputs,
|
39 |
max_new_tokens=150,
|
40 |
do_sample=True,
|
41 |
temperature=0.7,
|
42 |
-
top_k=50,
|
43 |
top_p=0.95
|
44 |
)
|
45 |
|
|
|
46 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
47 |
return response
|
48 |
|
49 |
-
except RuntimeError as e:
|
50 |
-
if "CUDA error" in str(e):
|
51 |
-
return "⚠️ CUDA error during generation. Try restarting or changing your input."
|
52 |
-
return f"Unexpected error: {e}"
|
53 |
except Exception as e:
|
54 |
-
|
|
|
55 |
|
56 |
-
# Gradio
|
57 |
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="Gemma Chatbot")
|
58 |
iface.launch()
|
|
|
3 |
from peft import PeftModel
|
4 |
import gradio as gr
|
5 |
|
6 |
+
# Model loading
|
7 |
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit"
|
8 |
adapter_name = "adarsh3601/my_gemma3_pt"
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
+
# Load base model in 4-bit with float16
|
12 |
base_model = AutoModelForCausalLM.from_pretrained(
|
13 |
base_model_name,
|
14 |
device_map="auto",
|
|
|
16 |
load_in_4bit=True
|
17 |
)
|
18 |
|
19 |
+
# Load tokenizer
|
20 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
21 |
+
|
22 |
+
# Load fine-tuned adapter
|
23 |
model = PeftModel.from_pretrained(base_model, adapter_name)
|
24 |
model.to(device)
|
25 |
|
26 |
+
# Chat function
|
27 |
def chat(message):
|
|
|
|
|
|
|
28 |
try:
|
29 |
+
# Tokenize input (do NOT convert to .half())
|
30 |
+
inputs = tokenizer(message, return_tensors="pt").to(device)
|
31 |
+
|
32 |
+
# Generate output
|
|
|
|
|
|
|
|
|
|
|
33 |
outputs = model.generate(
|
34 |
**inputs,
|
35 |
max_new_tokens=150,
|
36 |
do_sample=True,
|
37 |
temperature=0.7,
|
|
|
38 |
top_p=0.95
|
39 |
)
|
40 |
|
41 |
+
# Decode output
|
42 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
return response
|
44 |
|
|
|
|
|
|
|
|
|
45 |
except Exception as e:
|
46 |
+
print("Unexpected error:", e)
|
47 |
+
return "An error occurred during generation."
|
48 |
|
49 |
+
# Launch Gradio interface
|
50 |
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="Gemma Chatbot")
|
51 |
iface.launch()
|