Spaces:
Paused
Paused
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
import gradio as gr | |
# Model loading | |
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit" | |
adapter_name = "adarsh3601/my_gemma3_pt" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load base model in 4-bit with float16 | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_name, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
load_in_4bit=True | |
) | |
# Load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
# Load fine-tuned adapter | |
model = PeftModel.from_pretrained(base_model, adapter_name) | |
model.to(device) | |
# Chat function | |
def chat(message): | |
try: | |
# Tokenize input (do NOT convert to .half()) | |
inputs = tokenizer(message, return_tensors="pt").to(device) | |
# Generate output | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=150, | |
do_sample=True, | |
temperature=0.7, | |
top_p=0.95 | |
) | |
# Decode output | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
except Exception as e: | |
print("Unexpected error:", e) | |
return "An error occurred during generation." | |
# Launch Gradio interface | |
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="Gemma Chatbot") | |
iface.launch() | |