TestingModelAPI / app.py
made1570's picture
Update app.py
f118086 verified
raw
history blame
1.42 kB
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import gradio as gr
# Model loading
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit"
adapter_name = "adarsh3601/my_gemma3_pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load base model in 4-bit with float16
base_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
torch_dtype=torch.float16,
load_in_4bit=True
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# Load fine-tuned adapter
model = PeftModel.from_pretrained(base_model, adapter_name)
model.to(device)
# Chat function
def chat(message):
try:
# Tokenize input (do NOT convert to .half())
inputs = tokenizer(message, return_tensors="pt").to(device)
# Generate output
outputs = model.generate(
**inputs,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_p=0.95
)
# Decode output
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
except Exception as e:
print("Unexpected error:", e)
return "An error occurred during generation."
# Launch Gradio interface
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="Gemma Chatbot")
iface.launch()