Spaces:
Paused
Paused
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from peft import PeftModel | |
import gradio as gr | |
# Model loading | |
base_model_name = "unsloth/gemma-3-12b-it-unsloth-bnb-4bit" | |
adapter_name = "adarsh3601/my_gemma3_pt" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load base model | |
base_model = AutoModelForCausalLM.from_pretrained( | |
base_model_name, | |
device_map={"": device}, | |
torch_dtype=torch.float16, | |
load_in_4bit=True | |
) | |
# Load tokenizer and adapter | |
tokenizer = AutoTokenizer.from_pretrained(base_model_name) | |
model = PeftModel.from_pretrained(base_model, adapter_name) | |
model.to(device) | |
# Chat function | |
def chat(message): | |
inputs = tokenizer(message, return_tensors="pt") | |
# Move tensors to the correct device and convert only float tensors to half | |
for k in inputs: | |
if inputs[k].dtype == torch.float32: | |
inputs[k] = inputs[k].to(device).half() | |
else: | |
inputs[k] = inputs[k].to(device) | |
outputs = model.generate(**inputs, max_new_tokens=150, do_sample=True) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
# Launch Gradio app | |
iface = gr.Interface(fn=chat, inputs="text", outputs="text", title="Gemma Chatbot") | |
iface.launch() | |