Update app.py
Browse files
app.py
CHANGED
|
@@ -1,242 +1,135 @@
|
|
| 1 |
-
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import numpy as np
|
| 4 |
-
from datetime import datetime, timedelta
|
| 5 |
-
import folium
|
| 6 |
from folium import plugins
|
| 7 |
-
import
|
| 8 |
-
from geopy.geocoders import Nominatim
|
| 9 |
-
from geopy.exc import GeocoderTimedOut
|
| 10 |
-
import pandas as pd
|
| 11 |
-
from scipy import stats
|
| 12 |
-
|
| 13 |
-
# Load environment variables
|
| 14 |
-
load_dotenv()
|
| 15 |
-
|
| 16 |
-
class TobaccoAnalyzer:
|
| 17 |
-
def __init__(self):
|
| 18 |
-
self.api_key = os.getenv('OPENWEATHER_API_KEY', 'default_key')
|
| 19 |
-
self.optimal_conditions = {
|
| 20 |
-
'temperature': {'min': 20, 'max': 30},
|
| 21 |
-
'humidity': {'min': 60, 'max': 80},
|
| 22 |
-
'rainfall': {'min': 500/365, 'max': 1200/365}
|
| 23 |
-
}
|
| 24 |
-
self.geolocator = Nominatim(user_agent="tobacco_analyzer")
|
| 25 |
-
self.seasons = {
|
| 26 |
-
1: 'Winter', 2: 'Winter', 3: 'Spring',
|
| 27 |
-
4: 'Spring', 5: 'Spring', 6: 'Summer',
|
| 28 |
-
7: 'Summer', 8: 'Summer', 9: 'Fall',
|
| 29 |
-
10: 'Fall', 11: 'Fall', 12: 'Winter'
|
| 30 |
-
}
|
| 31 |
-
|
| 32 |
-
def geocode_location(self, location_name):
|
| 33 |
-
"""Convert location name to coordinates"""
|
| 34 |
-
try:
|
| 35 |
-
location = self.geolocator.geocode(location_name)
|
| 36 |
-
if location:
|
| 37 |
-
return {
|
| 38 |
-
'lat': location.latitude,
|
| 39 |
-
'lon': location.longitude,
|
| 40 |
-
'address': location.address
|
| 41 |
-
}
|
| 42 |
-
return None
|
| 43 |
-
except GeocoderTimedOut:
|
| 44 |
-
return None
|
| 45 |
-
|
| 46 |
-
def get_weather_data(self, lat, lon, historical_days=90, forecast_days=90):
|
| 47 |
-
"""Get historical and forecast weather data"""
|
| 48 |
-
historical_data = []
|
| 49 |
-
|
| 50 |
-
# Get historical data
|
| 51 |
-
for day in range(historical_days):
|
| 52 |
-
date = datetime.now() - timedelta(days=day)
|
| 53 |
-
url = f"https://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={self.api_key}&units=metric&dt={int(date.timestamp())}"
|
| 54 |
-
try:
|
| 55 |
-
response = requests.get(url)
|
| 56 |
-
if response.status_code == 200:
|
| 57 |
-
data = response.json()
|
| 58 |
-
weather_data = {
|
| 59 |
-
'date': date,
|
| 60 |
-
'temperature': data['main']['temp'],
|
| 61 |
-
'humidity': data['main']['humidity'],
|
| 62 |
-
'rainfall': data.get('rain', {}).get('1h', 0) * 24,
|
| 63 |
-
'type': 'historical',
|
| 64 |
-
'description': data['weather'][0]['description']
|
| 65 |
-
}
|
| 66 |
-
historical_data.append(weather_data)
|
| 67 |
-
except Exception as e:
|
| 68 |
-
print(f"Error fetching historical data: {e}")
|
| 69 |
-
|
| 70 |
-
# Get forecast data
|
| 71 |
-
forecast_data = []
|
| 72 |
-
try:
|
| 73 |
-
forecast_url = f"https://api.openweathermap.org/data/2.5/forecast?lat={lat}&lon={lon}&appid={self.api_key}&units=metric"
|
| 74 |
-
response = requests.get(forecast_url)
|
| 75 |
-
if response.status_code == 200:
|
| 76 |
-
data = response.json()
|
| 77 |
-
for item in data['list']:
|
| 78 |
-
forecast = {
|
| 79 |
-
'date': datetime.fromtimestamp(item['dt']),
|
| 80 |
-
'temperature': item['main']['temp'],
|
| 81 |
-
'humidity': item['main']['humidity'],
|
| 82 |
-
'rainfall': item.get('rain', {}).get('3h', 0) * 8,
|
| 83 |
-
'type': 'forecast_5day',
|
| 84 |
-
'description': item['weather'][0]['description']
|
| 85 |
-
}
|
| 86 |
-
forecast_data.append(forecast)
|
| 87 |
-
|
| 88 |
-
except Exception as e:
|
| 89 |
-
print(f"Error fetching forecast data: {e}")
|
| 90 |
-
|
| 91 |
-
if not historical_data and not forecast_data:
|
| 92 |
-
return None
|
| 93 |
-
|
| 94 |
-
# Combine and process data
|
| 95 |
-
all_data = pd.DataFrame(historical_data + forecast_data)
|
| 96 |
-
if not all_data.empty:
|
| 97 |
-
all_data = all_data.sort_values('date')
|
| 98 |
-
all_data['month'] = all_data['date'].dt.month
|
| 99 |
-
all_data['season'] = all_data['month'].map(self.seasons)
|
| 100 |
-
|
| 101 |
-
# Calculate rolling averages
|
| 102 |
-
all_data['temp_7day_avg'] = all_data['temperature'].rolling(window=7, min_periods=1).mean()
|
| 103 |
-
all_data['humidity_7day_avg'] = all_data['humidity'].rolling(window=7, min_periods=1).mean()
|
| 104 |
-
all_data['rainfall_7day_avg'] = all_data['rainfall'].rolling(window=7, min_periods=1).mean()
|
| 105 |
-
|
| 106 |
-
return all_data
|
| 107 |
-
|
| 108 |
-
def analyze_trends(self, df):
|
| 109 |
-
"""Analyze weather trends and patterns"""
|
| 110 |
-
try:
|
| 111 |
-
historical = df[df['type'] == 'historical']
|
| 112 |
-
forecast = df[df['type'].isin(['forecast_5day', 'forecast_extended'])]
|
| 113 |
-
|
| 114 |
-
if historical.empty:
|
| 115 |
-
return None
|
| 116 |
-
|
| 117 |
-
analysis = {
|
| 118 |
-
'historical': {
|
| 119 |
-
'temperature': {
|
| 120 |
-
'mean': historical['temperature'].mean(),
|
| 121 |
-
'std': historical['temperature'].std(),
|
| 122 |
-
'trend': stats.linregress(range(len(historical)), historical['temperature'])[0]
|
| 123 |
-
},
|
| 124 |
-
'humidity': {
|
| 125 |
-
'mean': historical['humidity'].mean(),
|
| 126 |
-
'std': historical['humidity'].std(),
|
| 127 |
-
'trend': stats.linregress(range(len(historical)), historical['humidity'])[0]
|
| 128 |
-
},
|
| 129 |
-
'rainfall': {
|
| 130 |
-
'mean': historical['rainfall'].mean(),
|
| 131 |
-
'std': historical['rainfall'].std(),
|
| 132 |
-
'trend': stats.linregress(range(len(historical)), historical['rainfall'])[0]
|
| 133 |
-
}
|
| 134 |
-
}
|
| 135 |
-
}
|
| 136 |
-
|
| 137 |
-
if not forecast.empty:
|
| 138 |
-
analysis['forecast'] = {
|
| 139 |
-
'temperature': {
|
| 140 |
-
'mean': forecast['temperature'].mean(),
|
| 141 |
-
'std': forecast['temperature'].std(),
|
| 142 |
-
},
|
| 143 |
-
'humidity': {
|
| 144 |
-
'mean': forecast['humidity'].mean(),
|
| 145 |
-
'std': forecast['humidity'].std(),
|
| 146 |
-
},
|
| 147 |
-
'rainfall': {
|
| 148 |
-
'mean': forecast['rainfall'].mean(),
|
| 149 |
-
'std': forecast['rainfall'].std(),
|
| 150 |
-
}
|
| 151 |
-
}
|
| 152 |
-
|
| 153 |
-
return analysis
|
| 154 |
-
except Exception as e:
|
| 155 |
-
print(f"Error in trend analysis: {e}")
|
| 156 |
-
return None
|
| 157 |
|
|
|
|
| 158 |
def process_example(location_name):
|
| 159 |
-
"""Process example inputs"""
|
| 160 |
try:
|
| 161 |
return analyze_location(location_name)
|
| 162 |
except Exception as e:
|
| 163 |
print(f"Error processing example: {e}")
|
| 164 |
return None, None, f"Error processing example: {str(e)}", None
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
|
| 217 |
-
#
|
| 218 |
-
|
| 219 |
-
fn=analyze_location,
|
| 220 |
-
inputs=[
|
| 221 |
-
gr.Textbox(label="Enter Location", placeholder="e.g., Tabora, Tanzania")
|
| 222 |
-
],
|
| 223 |
-
outputs=[
|
| 224 |
-
gr.Plot(label="Weather Analysis"),
|
| 225 |
-
gr.Plot(label="Growing Conditions Score"),
|
| 226 |
-
gr.Textbox(label="Analysis Results", lines=15),
|
| 227 |
-
gr.HTML(label="Location Analysis")
|
| 228 |
-
],
|
| 229 |
-
title="🌱 Tobacco Growth Prediction for Credit Scoring",
|
| 230 |
-
description="Enter a location to analyze growing conditions and credit risk.",
|
| 231 |
-
examples=[
|
| 232 |
-
["Tabora, Tanzania"],
|
| 233 |
-
["Urambo, Tabora, Tanzania"],
|
| 234 |
-
["Sikonge, Tabora, Tanzania"],
|
| 235 |
-
["Nzega, Tabora, Tanzania"]
|
| 236 |
-
],
|
| 237 |
-
cache_examples=True
|
| 238 |
-
)
|
| 239 |
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Add these imports to your existing imports if not already present
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from folium import plugins
|
| 3 |
+
import branca
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# Add this function to handle example processing
|
| 6 |
def process_example(location_name):
|
| 7 |
+
"""Process example inputs with proper error handling"""
|
| 8 |
try:
|
| 9 |
return analyze_location(location_name)
|
| 10 |
except Exception as e:
|
| 11 |
print(f"Error processing example: {e}")
|
| 12 |
return None, None, f"Error processing example: {str(e)}", None
|
| 13 |
|
| 14 |
+
# Update your create_map function inside VisualizationHandler class
|
| 15 |
+
def create_map(self, lat, lon, score):
|
| 16 |
+
"""Create an enhanced interactive map with weather and terrain analysis"""
|
| 17 |
+
m = folium.Map(location=[lat, lon], zoom_start=13)
|
| 18 |
+
|
| 19 |
+
# Add main analysis circle
|
| 20 |
+
color = self.get_color_for_score(score)
|
| 21 |
+
folium.Circle(
|
| 22 |
+
radius=2000, # 2km radius
|
| 23 |
+
location=[lat, lon],
|
| 24 |
+
popup=f'Growing Suitability Score: {score:.2f}',
|
| 25 |
+
color=color,
|
| 26 |
+
fill=True,
|
| 27 |
+
fillOpacity=0.4
|
| 28 |
+
).add_to(m)
|
| 29 |
+
|
| 30 |
+
# Add terrain analysis circles
|
| 31 |
+
for radius in [1000, 1500]:
|
| 32 |
+
folium.Circle(
|
| 33 |
+
radius=radius,
|
| 34 |
+
location=[lat, lon],
|
| 35 |
+
color=color,
|
| 36 |
+
fill=False,
|
| 37 |
+
weight=1
|
| 38 |
+
).add_to(m)
|
| 39 |
+
|
| 40 |
+
# Add custom legend
|
| 41 |
+
legend_html = """
|
| 42 |
+
<div style="position: fixed; bottom: 50px; left: 50px; z-index: 1000; background-color: white;
|
| 43 |
+
padding: 10px; border-radius: 5px; border: 2px solid grey;">
|
| 44 |
+
<h4>Suitability Score</h4>
|
| 45 |
+
<div><i style="background: green"></i> High (>0.8)</div>
|
| 46 |
+
<div><i style="background: yellow"></i> Good (>0.6)</div>
|
| 47 |
+
<div><i style="background: orange"></i> Moderate (>0.4)</div>
|
| 48 |
+
<div><i style="background: red"></i> Low (<0.4)</div>
|
| 49 |
+
</div>
|
| 50 |
+
"""
|
| 51 |
+
m.get_root().html.add_child(folium.Element(legend_html))
|
| 52 |
+
|
| 53 |
+
# Add measurement tool
|
| 54 |
+
plugins.MeasureControl(position='topright').add_to(m)
|
| 55 |
+
|
| 56 |
+
# Add fullscreen option
|
| 57 |
+
plugins.Fullscreen().add_to(m)
|
| 58 |
+
|
| 59 |
+
# Add mini map
|
| 60 |
+
minimap = plugins.MiniMap()
|
| 61 |
+
m.add_child(minimap)
|
| 62 |
+
|
| 63 |
+
return m._repr_html_()
|
| 64 |
|
| 65 |
+
# Update the Gradio interface section
|
| 66 |
+
iface = gr.Blocks(theme=gr.themes.Base())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
+
with iface:
|
| 69 |
+
gr.Markdown(
|
| 70 |
+
"""
|
| 71 |
+
# 🌱 Tobacco Growth Prediction for Credit Scoring
|
| 72 |
+
Enter a location in Tanzania to analyze growing conditions and assess credit risk.
|
| 73 |
+
"""
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
with gr.Row():
|
| 77 |
+
location_input = gr.Textbox(
|
| 78 |
+
label="Enter Location",
|
| 79 |
+
placeholder="e.g., Tabora, Tanzania",
|
| 80 |
+
lines=1
|
| 81 |
+
)
|
| 82 |
+
analyze_button = gr.Button("📊 Analyze", variant="primary")
|
| 83 |
+
|
| 84 |
+
with gr.Tabs():
|
| 85 |
+
with gr.TabItem("📊 Analysis Results"):
|
| 86 |
+
with gr.Row():
|
| 87 |
+
analysis_text = gr.Textbox(
|
| 88 |
+
label="Comprehensive Analysis",
|
| 89 |
+
lines=15,
|
| 90 |
+
interactive=False
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
with gr.Row():
|
| 94 |
+
weather_plot = gr.Plot(label="Weather Analysis")
|
| 95 |
+
|
| 96 |
+
with gr.Row():
|
| 97 |
+
with gr.Column(scale=1):
|
| 98 |
+
score_gauge = gr.Plot(label="Suitability Score")
|
| 99 |
+
with gr.Column(scale=1):
|
| 100 |
+
location_map = gr.HTML(label="Location Analysis")
|
| 101 |
+
|
| 102 |
+
with gr.TabItem("ℹ️ Help"):
|
| 103 |
+
gr.Markdown("""
|
| 104 |
+
### How to Use:
|
| 105 |
+
1. Enter a location name in Tanzania (preferably in Tabora region)
|
| 106 |
+
2. Click 'Analyze' to get comprehensive results
|
| 107 |
+
3. View the analysis in different tabs
|
| 108 |
+
|
| 109 |
+
### Understanding Results:
|
| 110 |
+
- Weather Analysis: Shows historical and forecast patterns
|
| 111 |
+
- Suitability Score: Overall assessment of growing conditions
|
| 112 |
+
- Location Analysis: Interactive map with terrain analysis
|
| 113 |
+
""")
|
| 114 |
+
|
| 115 |
+
# Set up examples with proper handling
|
| 116 |
+
gr.Examples(
|
| 117 |
+
examples=[
|
| 118 |
+
["Tabora, Tanzania"],
|
| 119 |
+
["Urambo, Tabora, Tanzania"],
|
| 120 |
+
["Sikonge, Tabora, Tanzania"],
|
| 121 |
+
["Nzega, Tabora, Tanzania"]
|
| 122 |
+
],
|
| 123 |
+
inputs=location_input,
|
| 124 |
+
outputs=[weather_plot, score_gauge, analysis_text, location_map],
|
| 125 |
+
fn=process_example,
|
| 126 |
+
cache_examples=True,
|
| 127 |
+
preprocess=True
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Handle button click
|
| 131 |
+
analyze_button.click(
|
| 132 |
+
fn=analyze_location,
|
| 133 |
+
inputs=[location_input],
|
| 134 |
+
outputs=[weather_plot, score_gauge, analysis_text, location_map]
|
| 135 |
+
)
|