Update app.py
Browse files
app.py
CHANGED
|
@@ -1,338 +1,109 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
import gradio as gr
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
from part2_visualization import VisualizationHandler
|
| 7 |
-
from part3 import SAMAnalyzer
|
| 8 |
-
import time
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
print(f"Model already exists at {filename}")
|
| 15 |
-
return
|
| 16 |
-
print(f"Downloading {filename}...")
|
| 17 |
-
start_time = time.time()
|
| 18 |
-
urllib.request.urlretrieve(url, filename)
|
| 19 |
-
end_time = time.time()
|
| 20 |
-
print(f"Download completed in {end_time - start_time:.2f} seconds")
|
| 21 |
-
|
| 22 |
-
# Download SAM model if it doesn't exist
|
| 23 |
-
if not os.path.exists(MODEL_PATH):
|
| 24 |
-
try:
|
| 25 |
-
download_with_progress(
|
| 26 |
-
'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth',
|
| 27 |
-
MODEL_PATH
|
| 28 |
-
)
|
| 29 |
-
except Exception as e:
|
| 30 |
-
print(f"Error downloading SAM model: {e}")
|
| 31 |
-
print("Please ensure you have internet connection and sufficient disk space.")
|
| 32 |
-
|
| 33 |
-
def analyze_location(location_name):
|
| 34 |
-
"""Analyze location using weather and satellite data"""
|
| 35 |
-
try:
|
| 36 |
-
analyzer = TobaccoAnalyzer()
|
| 37 |
-
visualizer = VisualizationHandler(analyzer.optimal_conditions)
|
| 38 |
-
|
| 39 |
-
# Get coordinates from location name
|
| 40 |
-
location_data = analyzer.geocode_location(location_name)
|
| 41 |
-
if not location_data:
|
| 42 |
-
return None, None, "Location not found. Please try a different location name.", None
|
| 43 |
-
|
| 44 |
-
lat, lon = location_data['lat'], location_data['lon']
|
| 45 |
-
|
| 46 |
-
# Get weather data
|
| 47 |
-
df = analyzer.get_weather_data(lat, lon, historical_days=90, forecast_days=90)
|
| 48 |
-
if df is None or df.empty:
|
| 49 |
-
return None, None, "Unable to fetch weather data. Please try again.", None
|
| 50 |
-
|
| 51 |
-
# Separate historical and forecast data
|
| 52 |
-
historical = df[df['type'] == 'historical']
|
| 53 |
-
forecast = df[df['type'] != 'historical']
|
| 54 |
-
|
| 55 |
-
if historical.empty:
|
| 56 |
-
return None, None, "No historical data available.", None
|
| 57 |
-
|
| 58 |
-
# Calculate base scores
|
| 59 |
-
temp_score = np.clip((historical['temperature'].mean() - 15) / (30 - 15), 0, 1)
|
| 60 |
-
humidity_score = np.clip((historical['humidity'].mean() - 50) / (80 - 50), 0, 1)
|
| 61 |
-
rainfall_score = np.clip(historical['rainfall'].mean() / 5, 0, 1)
|
| 62 |
-
ndvi_score = np.clip((historical['estimated_ndvi'].mean() + 1) / 2, 0, 1)
|
| 63 |
-
|
| 64 |
-
# Get trends analysis
|
| 65 |
-
trends = analyzer.analyze_trends(df)
|
| 66 |
-
if trends is None:
|
| 67 |
-
return None, None, "Error calculating trends.", None
|
| 68 |
-
|
| 69 |
-
# Calculate overall score
|
| 70 |
-
weights = {
|
| 71 |
-
'temperature': 0.3,
|
| 72 |
-
'humidity': 0.2,
|
| 73 |
-
'rainfall': 0.2,
|
| 74 |
-
'ndvi': 0.3
|
| 75 |
-
}
|
| 76 |
-
|
| 77 |
-
overall_score = (
|
| 78 |
-
temp_score * weights['temperature'] +
|
| 79 |
-
humidity_score * weights['humidity'] +
|
| 80 |
-
rainfall_score * weights['rainfall'] +
|
| 81 |
-
ndvi_score * weights['ndvi']
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
-
# Create visualizations
|
| 85 |
-
time_series_plot = visualizer.create_interactive_plots(df)
|
| 86 |
-
gauge_plot = visualizer.create_gauge_chart(overall_score)
|
| 87 |
-
location_map = visualizer.create_enhanced_map(lat, lon, overall_score, historical['estimated_ndvi'].mean())
|
| 88 |
-
|
| 89 |
-
# Generate analysis text
|
| 90 |
-
analysis_text = f"""
|
| 91 |
-
📍 Location Analysis:
|
| 92 |
-
Location: {location_data['address']}
|
| 93 |
-
Coordinates: {lat:.4f}°N, {lon:.4f}°E
|
| 94 |
-
Region: {location_data['region'] if location_data['region'] else 'Unknown'}
|
| 95 |
-
|
| 96 |
-
🌡️ Historical Weather Analysis (Past 90 Days):
|
| 97 |
-
Temperature: {historical['temperature'].mean():.1f}°C (±{historical['temperature'].std():.1f}°C)
|
| 98 |
-
Daily Range: {historical['temp_range'].mean():.1f}°C
|
| 99 |
-
Humidity: {historical['humidity'].mean():.1f}% (±{historical['humidity'].std():.1f}%)
|
| 100 |
-
Rainfall: {historical['rainfall'].mean():.1f}mm/day (±{historical['rainfall'].std():.1f}mm)
|
| 101 |
-
|
| 102 |
-
🌿 Vegetation Analysis:
|
| 103 |
-
Current NDVI: {historical['estimated_ndvi'].mean():.2f}
|
| 104 |
-
Minimum NDVI: {historical['estimated_ndvi'].min():.2f}
|
| 105 |
-
Maximum NDVI: {historical['estimated_ndvi'].max():.2f}
|
| 106 |
-
Vegetation Status: {get_vegetation_status(historical['estimated_ndvi'].mean())}
|
| 107 |
-
|
| 108 |
-
🔮 Forecast Analysis (Next 90 Days):
|
| 109 |
-
Temperature: {forecast['temperature'].mean():.1f}°C (±{forecast['temperature'].std():.1f}°C)
|
| 110 |
-
Humidity: {forecast['humidity'].mean():.1f}% (±{forecast['humidity'].std():.1f}%)
|
| 111 |
-
Rainfall: {forecast['rainfall'].mean():.1f}mm/day (±{forecast['rainfall'].std():.1f}mm)
|
| 112 |
-
Expected NDVI: {forecast['estimated_ndvi'].mean():.2f}
|
| 113 |
-
|
| 114 |
-
📊 Growing Condition Scores:
|
| 115 |
-
Temperature Score: {temp_score:.2f}
|
| 116 |
-
Humidity Score: {humidity_score:.2f}
|
| 117 |
-
Rainfall Score: {rainfall_score:.2f}
|
| 118 |
-
Vegetation Score: {ndvi_score:.2f}
|
| 119 |
-
Overall Score: {overall_score:.2f}
|
| 120 |
-
|
| 121 |
-
🎯 Recommendations:
|
| 122 |
-
{get_recommendations(overall_score, ndvi_score)}
|
| 123 |
-
|
| 124 |
-
⚠️ Risk Factors:
|
| 125 |
-
{get_risk_factors(df, trends)}
|
| 126 |
-
|
| 127 |
-
📝 Additional Notes:
|
| 128 |
-
• Growing Season: {is_growing_season(historical['season'].iloc[-1])}
|
| 129 |
-
• Weather Stability: {get_weather_stability(historical)}
|
| 130 |
-
• Long-term Outlook: {get_long_term_outlook(trends)}
|
| 131 |
-
"""
|
| 132 |
-
|
| 133 |
-
return location_map, analysis_text, time_series_plot, gauge_plot
|
| 134 |
-
|
| 135 |
-
except Exception as e:
|
| 136 |
-
error_message = f"An error occurred: {str(e)}"
|
| 137 |
-
print(f"Error details: {e}")
|
| 138 |
-
return None, None, error_message, None
|
| 139 |
-
|
| 140 |
-
def analyze_satellite_image(image):
|
| 141 |
-
"""Analyze satellite image using SAM2"""
|
| 142 |
try:
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
except Exception as e:
|
| 153 |
-
return
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
elif ndvi < 0.1:
|
| 160 |
-
return "Low - Very sparse vegetation"
|
| 161 |
-
elif ndvi < 0.2:
|
| 162 |
-
return "Sparse - Stressed vegetation"
|
| 163 |
-
elif ndvi < 0.3:
|
| 164 |
-
return "Moderate - Typical agricultural land"
|
| 165 |
-
elif ndvi < 0.4:
|
| 166 |
-
return "Good - Healthy vegetation"
|
| 167 |
-
elif ndvi < 0.5:
|
| 168 |
-
return "High - Very healthy vegetation"
|
| 169 |
-
elif ndvi < 0.6:
|
| 170 |
-
return "Very High - Dense vegetation"
|
| 171 |
-
else:
|
| 172 |
-
return "Dense - Very dense, healthy vegetation"
|
| 173 |
-
|
| 174 |
-
def get_recommendations(score, ndvi):
|
| 175 |
-
"""Get detailed recommendations based on scores"""
|
| 176 |
-
if score >= 0.8 and ndvi >= 0.6:
|
| 177 |
-
return """
|
| 178 |
-
✅ Excellent conditions for tobacco growing
|
| 179 |
-
• Proceed with standard planting schedule
|
| 180 |
-
• Regular monitoring recommended
|
| 181 |
-
• Consider expansion opportunities
|
| 182 |
-
"""
|
| 183 |
-
elif score >= 0.6:
|
| 184 |
-
return """
|
| 185 |
-
👍 Good conditions with some considerations
|
| 186 |
-
• Implement basic risk mitigation measures
|
| 187 |
-
• Regular monitoring essential
|
| 188 |
-
• Consider crop insurance
|
| 189 |
-
"""
|
| 190 |
-
elif score >= 0.4:
|
| 191 |
-
return """
|
| 192 |
-
⚠️ Marginal conditions - proceed with caution
|
| 193 |
-
• Enhanced monitoring required
|
| 194 |
-
• Strong risk mitigation needed
|
| 195 |
-
• Crop insurance strongly recommended
|
| 196 |
-
• Consider alternative timing
|
| 197 |
-
"""
|
| 198 |
-
else:
|
| 199 |
-
return """
|
| 200 |
-
❌ Poor conditions - high risk
|
| 201 |
-
• Not recommended for planting
|
| 202 |
-
• Consider alternative locations
|
| 203 |
-
• Extensive risk mitigation needed
|
| 204 |
-
• Alternative crops suggested
|
| 205 |
-
"""
|
| 206 |
-
|
| 207 |
-
def get_risk_factors(df, trends):
|
| 208 |
-
"""Analyze and return risk factors"""
|
| 209 |
-
risks = []
|
| 210 |
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
risks.append("• Declining temperature trend")
|
| 215 |
-
if df['rainfall'].std() > df['rainfall'].mean():
|
| 216 |
-
risks.append("• Inconsistent rainfall patterns")
|
| 217 |
-
if trends['historical']['rainfall']['trend'] < 0:
|
| 218 |
-
risks.append("• Decreasing rainfall trend")
|
| 219 |
-
if trends['historical']['ndvi']['trend'] < 0:
|
| 220 |
-
risks.append("• Declining vegetation health")
|
| 221 |
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
}
|
| 232 |
-
return season_suitability.get(season, "Season not identified")
|
| 233 |
-
|
| 234 |
-
def get_weather_stability(df):
|
| 235 |
-
"""Assess weather stability"""
|
| 236 |
-
temp_std = df['temperature'].std()
|
| 237 |
-
if temp_std < 2:
|
| 238 |
-
return "Very stable weather patterns"
|
| 239 |
-
elif temp_std < 4:
|
| 240 |
-
return "Moderately stable weather"
|
| 241 |
-
return "Unstable weather patterns - higher risk"
|
| 242 |
-
|
| 243 |
-
def get_long_term_outlook(trends):
|
| 244 |
-
"""Assess long-term outlook based on trends"""
|
| 245 |
-
temp_trend = trends['historical']['temperature']['trend']
|
| 246 |
-
rain_trend = trends['historical']['rainfall']['trend']
|
| 247 |
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
return "Mixed conditions - monitor closely"
|
| 253 |
-
|
| 254 |
-
# Create Gradio interface
|
| 255 |
-
with gr.Blocks(theme=gr.themes.Base()) as demo:
|
| 256 |
-
gr.Markdown(
|
| 257 |
-
"""
|
| 258 |
-
# 🌱 Agricultural Credit Risk Assessment System
|
| 259 |
-
## Weather, Vegetation, and Credit Scoring Analysis for Tobacco Farming
|
| 260 |
-
"""
|
| 261 |
)
|
| 262 |
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
)
|
| 271 |
-
analyze_button = gr.Button("Analyze", variant="primary", scale=1)
|
| 272 |
-
|
| 273 |
-
# Map and Analysis Section
|
| 274 |
-
with gr.Row():
|
| 275 |
-
with gr.Column(scale=2):
|
| 276 |
-
location_map = gr.HTML(label="NDVI Analysis Map")
|
| 277 |
-
with gr.Column(scale=1):
|
| 278 |
-
analysis_text = gr.Textbox(
|
| 279 |
-
label="Analysis Results",
|
| 280 |
-
lines=25,
|
| 281 |
-
show_label=False
|
| 282 |
-
)
|
| 283 |
-
|
| 284 |
-
# Plots Section
|
| 285 |
-
with gr.Row():
|
| 286 |
-
weather_plot = gr.Plot(label="Weather Analysis")
|
| 287 |
-
|
| 288 |
-
with gr.Row():
|
| 289 |
-
score_gauge = gr.Plot(label="Growing Conditions Score")
|
| 290 |
-
|
| 291 |
-
# Location Examples
|
| 292 |
-
gr.Examples(
|
| 293 |
-
examples=[
|
| 294 |
-
["Tabora, Tanzania"],
|
| 295 |
-
["Urambo, Tabora, Tanzania"],
|
| 296 |
-
["Sikonge, Tabora, Tanzania"],
|
| 297 |
-
["Nzega, Tabora, Tanzania"]
|
| 298 |
-
],
|
| 299 |
-
inputs=location_input,
|
| 300 |
-
outputs=[location_map, analysis_text, weather_plot, score_gauge],
|
| 301 |
-
fn=analyze_location,
|
| 302 |
-
cache_examples=True
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
# Handle location analysis
|
| 306 |
-
analyze_button.click(
|
| 307 |
-
fn=analyze_location,
|
| 308 |
-
inputs=[location_input],
|
| 309 |
-
outputs=[location_map, analysis_text, weather_plot, score_gauge]
|
| 310 |
-
)
|
| 311 |
-
|
| 312 |
-
with gr.Tab("🛰️ Satellite Image Analysis"):
|
| 313 |
-
gr.Markdown("""
|
| 314 |
-
## Satellite Image Analysis with SAM2
|
| 315 |
-
Upload a satellite or aerial image to analyze vegetation health using advanced segmentation.
|
| 316 |
-
""")
|
| 317 |
-
|
| 318 |
-
with gr.Row():
|
| 319 |
-
image_input = gr.Image(
|
| 320 |
-
label="Upload Satellite/Aerial Image"
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
-
with gr.Row():
|
| 324 |
-
analyze_image_button = gr.Button("🔍 Analyze Image", variant="primary")
|
| 325 |
-
|
| 326 |
-
with gr.Row():
|
| 327 |
-
with gr.Column():
|
| 328 |
-
image_plot = gr.Plot(label="Vegetation Analysis Results")
|
| 329 |
-
with gr.Column():
|
| 330 |
-
image_analysis = gr.Textbox(
|
| 331 |
-
label="Analysis Results",
|
| 332 |
-
lines=10,
|
| 333 |
-
show_label=False
|
| 334 |
-
)
|
| 335 |
|
| 336 |
-
# Launch the app
|
| 337 |
if __name__ == "__main__":
|
| 338 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import requests
|
| 3 |
import gradio as gr
|
| 4 |
+
from huggingface_hub import HfApi, login, create_repo
|
| 5 |
+
import tempfile
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
def download_and_push_model(progress=gr.Progress()):
|
| 8 |
+
"""
|
| 9 |
+
Download SAM model and push it to Hugging Face Space
|
| 10 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
try:
|
| 12 |
+
# Login to Hugging Face
|
| 13 |
+
token = os.environ.get('HF_TOKEN')
|
| 14 |
+
if not token:
|
| 15 |
+
return "❌ Error: HF_TOKEN not found in environment variables. Please add it to Space secrets."
|
| 16 |
+
|
| 17 |
+
login(token) # Authenticate with Hugging Face
|
| 18 |
+
|
| 19 |
+
# Initialize Hugging Face API
|
| 20 |
+
api = HfApi()
|
| 21 |
+
space_id = "lyimo/downloadmodel"
|
| 22 |
+
model_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
|
| 23 |
+
|
| 24 |
+
progress(0.05, desc="Ensuring repository exists...")
|
| 25 |
+
try:
|
| 26 |
+
# Try to create the repo (will fail if it already exists, which is fine)
|
| 27 |
+
create_repo(
|
| 28 |
+
repo_id=space_id,
|
| 29 |
+
repo_type="space",
|
| 30 |
+
token=token,
|
| 31 |
+
exist_ok=True
|
| 32 |
+
)
|
| 33 |
+
except Exception as e:
|
| 34 |
+
progress(0.1, desc="Repository already exists, continuing...")
|
| 35 |
+
pass
|
| 36 |
+
|
| 37 |
+
# Create a temporary directory for downloading
|
| 38 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
| 39 |
+
progress(0.1, desc="Started download process...")
|
| 40 |
+
|
| 41 |
+
# Download file
|
| 42 |
+
local_path = os.path.join(temp_dir, "sam_vit_h_4b8939.pth")
|
| 43 |
+
response = requests.get(model_url, stream=True)
|
| 44 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 45 |
+
|
| 46 |
+
progress(0.2, desc="Downloading model...")
|
| 47 |
+
downloaded_size = 0
|
| 48 |
+
|
| 49 |
+
with open(local_path, 'wb') as file:
|
| 50 |
+
for chunk in response.iter_content(chunk_size=1024*1024):
|
| 51 |
+
if chunk:
|
| 52 |
+
file.write(chunk)
|
| 53 |
+
downloaded_size += len(chunk)
|
| 54 |
+
progress(0.2 + 0.6 * (downloaded_size/total_size),
|
| 55 |
+
desc=f"Downloading... {downloaded_size/(1024*1024):.1f}MB / {total_size/(1024*1024):.1f}MB")
|
| 56 |
+
|
| 57 |
+
progress(0.8, desc="Uploading to Hugging Face Space...")
|
| 58 |
+
|
| 59 |
+
# Upload to Hugging Face using commit operation
|
| 60 |
+
api.upload_file(
|
| 61 |
+
path_or_fileobj=local_path,
|
| 62 |
+
path_in_repo="sam_vit_h_4b8939.pth",
|
| 63 |
+
repo_id=space_id,
|
| 64 |
+
repo_type="space",
|
| 65 |
+
token=token,
|
| 66 |
+
commit_message="Upload SAM model weights"
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
progress(1.0, desc="Complete!")
|
| 70 |
+
return "✅ Model successfully downloaded and pushed to your Space!"
|
| 71 |
+
|
| 72 |
except Exception as e:
|
| 73 |
+
return f"❌ Error: {str(e)}\nToken status: {'Token exists' if token else 'No token found'}"
|
| 74 |
|
| 75 |
+
# Create Gradio interface
|
| 76 |
+
with gr.Blocks() as demo:
|
| 77 |
+
gr.Markdown("# Download SAM Model to Space")
|
| 78 |
+
gr.Markdown("This will download the Segment Anything Model (SAM) weights (~2.4GB) and push to this Space")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
with gr.Row():
|
| 81 |
+
download_button = gr.Button("📥 Download & Push Model", variant="primary")
|
| 82 |
+
status_text = gr.Textbox(label="Status", interactive=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
gr.Markdown("""
|
| 85 |
+
### Important Setup Steps:
|
| 86 |
+
1. Get your Hugging Face token from https://huggingface.co/settings/tokens
|
| 87 |
+
2. Add the token to Space secrets:
|
| 88 |
+
- Go to Space Settings > Secrets
|
| 89 |
+
- Add new secret named `HF_TOKEN`
|
| 90 |
+
- Paste your token as the value
|
| 91 |
+
3. Restart the Space after adding the token
|
| 92 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
download_button.click(
|
| 95 |
+
fn=download_and_push_model,
|
| 96 |
+
outputs=status_text,
|
| 97 |
+
show_progress=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
+
gr.Markdown("""
|
| 101 |
+
### Notes:
|
| 102 |
+
- Download size is approximately 2.4GB
|
| 103 |
+
- The model will be pushed to the Space repository
|
| 104 |
+
- Please wait for both download and upload to complete
|
| 105 |
+
- You can check the files tab after completion
|
| 106 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
|
|
|
| 108 |
if __name__ == "__main__":
|
| 109 |
demo.launch()
|