Update part1_data.py
Browse files- part1_data.py +117 -256
part1_data.py
CHANGED
|
@@ -66,7 +66,7 @@ class TobaccoAnalyzer:
|
|
| 66 |
data = response.json()
|
| 67 |
weather_data = {
|
| 68 |
'date': date,
|
| 69 |
-
'temperature': float(data['main']['temp']),
|
| 70 |
'humidity': float(data['main']['humidity']),
|
| 71 |
'rainfall': float(data.get('rain', {}).get('1h', 0)) * 24,
|
| 72 |
'type': 'historical',
|
|
@@ -85,7 +85,6 @@ class TobaccoAnalyzer:
|
|
| 85 |
response = requests.get(forecast_url)
|
| 86 |
if response.status_code == 200:
|
| 87 |
data = response.json()
|
| 88 |
-
# Group forecast data by day
|
| 89 |
daily_forecasts = {}
|
| 90 |
|
| 91 |
for item in data['list']:
|
|
@@ -97,21 +96,25 @@ class TobaccoAnalyzer:
|
|
| 97 |
'temps': [],
|
| 98 |
'humidity': [],
|
| 99 |
'rainfall': 0,
|
| 100 |
-
'descriptions': []
|
|
|
|
|
|
|
| 101 |
}
|
| 102 |
|
| 103 |
daily_forecasts[day_key]['temps'].append(float(item['main']['temp']))
|
| 104 |
daily_forecasts[day_key]['humidity'].append(float(item['main']['humidity']))
|
| 105 |
daily_forecasts[day_key]['rainfall'] += float(item.get('rain', {}).get('3h', 0))
|
| 106 |
daily_forecasts[day_key]['descriptions'].append(item['weather'][0]['description'])
|
|
|
|
|
|
|
| 107 |
|
| 108 |
# Create daily forecast entries
|
| 109 |
for day_key, day_data in daily_forecasts.items():
|
| 110 |
forecast = {
|
| 111 |
'date': datetime.combine(day_key, datetime.min.time()),
|
| 112 |
'temperature': np.mean(day_data['temps']),
|
| 113 |
-
'temp_min': min(day_data['
|
| 114 |
-
'temp_max': max(day_data['
|
| 115 |
'humidity': np.mean(day_data['humidity']),
|
| 116 |
'rainfall': day_data['rainfall'],
|
| 117 |
'type': 'forecast',
|
|
@@ -119,10 +122,39 @@ class TobaccoAnalyzer:
|
|
| 119 |
}
|
| 120 |
forecast_data.append(forecast)
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
except Exception as e:
|
| 123 |
print(f"Error fetching forecast data: {e}")
|
| 124 |
|
| 125 |
-
# Combine all data
|
| 126 |
all_data = pd.DataFrame(historical_data + forecast_data)
|
| 127 |
|
| 128 |
if not all_data.empty:
|
|
@@ -134,7 +166,10 @@ class TobaccoAnalyzer:
|
|
| 134 |
# Sort by date
|
| 135 |
all_data = all_data.sort_values('date')
|
| 136 |
|
| 137 |
-
#
|
|
|
|
|
|
|
|
|
|
| 138 |
all_data['month'] = all_data['date'].dt.month
|
| 139 |
all_data['season'] = all_data['month'].map(self.tanzania_seasons)
|
| 140 |
|
|
@@ -143,119 +178,77 @@ class TobaccoAnalyzer:
|
|
| 143 |
all_data['humidity_7day_avg'] = all_data['humidity'].rolling(window=7, min_periods=1).mean()
|
| 144 |
all_data['rainfall_7day_avg'] = all_data['rainfall'].rolling(window=7, min_periods=1).mean()
|
| 145 |
|
| 146 |
-
# Calculate daily suitability
|
| 147 |
all_data['daily_suitability'] = self.calculate_daily_suitability(all_data)
|
| 148 |
-
|
| 149 |
-
# Calculate NDVI
|
| 150 |
all_data['estimated_ndvi'] = self.estimate_ndvi(all_data)
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
-
#
|
| 158 |
-
|
| 159 |
-
'temperature': 'mean',
|
| 160 |
-
'humidity': 'mean',
|
| 161 |
-
'rainfall': 'sum',
|
| 162 |
-
'temp_min': 'min',
|
| 163 |
-
'temp_max': 'max',
|
| 164 |
-
'temp_7day_avg': 'last',
|
| 165 |
-
'humidity_7day_avg': 'last',
|
| 166 |
-
'rainfall_7day_avg': 'last',
|
| 167 |
-
'daily_suitability': 'mean',
|
| 168 |
-
'estimated_ndvi': 'mean'
|
| 169 |
-
}
|
| 170 |
|
| 171 |
-
#
|
| 172 |
-
|
| 173 |
-
'type': 'first',
|
| 174 |
-
'description': 'first',
|
| 175 |
-
'season': 'first'
|
| 176 |
-
}
|
| 177 |
|
| 178 |
-
#
|
| 179 |
-
|
| 180 |
-
|
|
|
|
|
|
|
| 181 |
|
| 182 |
-
# Combine
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
return
|
| 195 |
-
elif rainfall > 0:
|
| 196 |
-
return "Light Rain"
|
| 197 |
-
elif humidity > 80:
|
| 198 |
-
return "Humid"
|
| 199 |
-
elif temp > 30:
|
| 200 |
-
return "Hot"
|
| 201 |
-
elif temp < 20:
|
| 202 |
-
return "Cool"
|
| 203 |
-
else:
|
| 204 |
-
return "Fair"
|
| 205 |
|
| 206 |
def estimate_ndvi(self, weather_data):
|
| 207 |
-
"""Estimate NDVI based on weather conditions
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
# Season adjustment factors
|
| 214 |
-
season_factors = {
|
| 215 |
-
'Main': 1.0,
|
| 216 |
-
'Early': 0.8,
|
| 217 |
-
'Late': 0.7,
|
| 218 |
-
'Dry': 0.5
|
| 219 |
-
}
|
| 220 |
-
|
| 221 |
-
# Apply season adjustments with smooth transitions
|
| 222 |
-
season_multiplier = weather_data['season'].map(season_factors)
|
| 223 |
-
|
| 224 |
-
# Calculate base NDVI
|
| 225 |
-
base_ndvi = (
|
| 226 |
-
0.4 * normalized_temp +
|
| 227 |
-
0.3 * normalized_humidity +
|
| 228 |
-
0.3 * normalized_rainfall
|
| 229 |
-
) * season_multiplier
|
| 230 |
-
|
| 231 |
-
# Add slight random variation to make it more realistic
|
| 232 |
-
variation = np.random.normal(0, 0.05, size=len(base_ndvi))
|
| 233 |
-
|
| 234 |
-
# Combine and clip to valid range
|
| 235 |
-
return np.clip(base_ndvi + variation, -1, 1)
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
|
|
|
| 259 |
|
| 260 |
def analyze_trends(self, df):
|
| 261 |
"""Analyze weather trends and patterns"""
|
|
@@ -271,24 +264,26 @@ class TobaccoAnalyzer:
|
|
| 271 |
'temperature': {
|
| 272 |
'mean': historical['temperature'].mean(),
|
| 273 |
'std': historical['temperature'].std(),
|
| 274 |
-
'trend': stats.linregress(range(len(historical)),
|
| 275 |
-
|
| 276 |
},
|
| 277 |
'humidity': {
|
| 278 |
'mean': historical['humidity'].mean(),
|
| 279 |
'std': historical['humidity'].std(),
|
| 280 |
-
'trend': stats.linregress(range(len(historical)),
|
|
|
|
| 281 |
},
|
| 282 |
'rainfall': {
|
| 283 |
'mean': historical['rainfall'].mean(),
|
| 284 |
'std': historical['rainfall'].std(),
|
| 285 |
-
'trend': stats.linregress(range(len(historical)),
|
| 286 |
-
|
| 287 |
},
|
| 288 |
'ndvi': {
|
| 289 |
'mean': historical['estimated_ndvi'].mean(),
|
| 290 |
'std': historical['estimated_ndvi'].std(),
|
| 291 |
-
'trend': stats.linregress(range(len(historical)),
|
|
|
|
| 292 |
}
|
| 293 |
}
|
| 294 |
}
|
|
@@ -297,158 +292,24 @@ class TobaccoAnalyzer:
|
|
| 297 |
analysis['forecast'] = {
|
| 298 |
'temperature': {
|
| 299 |
'mean': forecast['temperature'].mean(),
|
| 300 |
-
'std': forecast['temperature'].std()
|
| 301 |
-
'daily_range': (forecast['temp_max'] - forecast['temp_min']).mean()
|
| 302 |
},
|
| 303 |
'humidity': {
|
| 304 |
'mean': forecast['humidity'].mean(),
|
| 305 |
'std': forecast['humidity'].std()
|
| 306 |
-
|
| 307 |
'rainfall': {
|
| 308 |
'mean': forecast['rainfall'].mean(),
|
| 309 |
-
'std': forecast['rainfall'].std()
|
| 310 |
-
'rainy_days': (forecast['rainfall'] > 0).sum()
|
| 311 |
},
|
| 312 |
'ndvi': {
|
| 313 |
'mean': forecast['estimated_ndvi'].mean(),
|
| 314 |
'std': forecast['estimated_ndvi'].std()
|
| 315 |
-
},
|
| 316 |
-
'confidence': {
|
| 317 |
-
'short_term': 0.9, # First 5 days
|
| 318 |
-
'medium_term': 0.7, # 6-15 days
|
| 319 |
-
'long_term': 0.5 # Beyond 15 days
|
| 320 |
}
|
| 321 |
}
|
| 322 |
-
|
| 323 |
return analysis
|
|
|
|
| 324 |
except Exception as e:
|
| 325 |
print(f"Error in trend analysis: {e}")
|
| 326 |
-
return None
|
| 327 |
-
|
| 328 |
-
def calculate_season_factor(self, date):
|
| 329 |
-
"""Calculate seasonal influence factor"""
|
| 330 |
-
day_of_year = date.timetuple().tm_yday
|
| 331 |
-
season_phase = 2 * np.pi * day_of_year / 365
|
| 332 |
-
|
| 333 |
-
# Base seasonal factor
|
| 334 |
-
base_factor = np.sin(season_phase)
|
| 335 |
-
|
| 336 |
-
# Adjust for Tanzania's specific seasons
|
| 337 |
-
month = date.month
|
| 338 |
-
if month in [12, 1, 2]: # Main growing season
|
| 339 |
-
season_modifier = 1.2
|
| 340 |
-
elif month in [3, 4, 5]: # Late season
|
| 341 |
-
season_modifier = 0.8
|
| 342 |
-
elif month in [6, 7, 8]: # Dry season
|
| 343 |
-
season_modifier = 0.5
|
| 344 |
-
else: # Early season
|
| 345 |
-
season_modifier = 0.9
|
| 346 |
-
|
| 347 |
-
return base_factor * season_modifier
|
| 348 |
-
|
| 349 |
-
def calculate_daily_pattern(self, hour, base_value, amplitude=1.0):
|
| 350 |
-
"""Calculate daily cyclic pattern"""
|
| 351 |
-
hour_phase = 2 * np.pi * hour / 24
|
| 352 |
-
return base_value + amplitude * np.sin(hour_phase - np.pi/2)
|
| 353 |
-
|
| 354 |
-
def get_weather_risk_factors(self, df):
|
| 355 |
-
"""Analyze weather-related risk factors"""
|
| 356 |
-
risks = []
|
| 357 |
-
|
| 358 |
-
# Temperature risks
|
| 359 |
-
temp_mean = df['temperature'].mean()
|
| 360 |
-
temp_std = df['temperature'].std()
|
| 361 |
-
if temp_mean > self.optimal_conditions['temperature']['max']:
|
| 362 |
-
risks.append(('High Temperature Risk', 'Average temperature above optimal range'))
|
| 363 |
-
elif temp_mean < self.optimal_conditions['temperature']['min']:
|
| 364 |
-
risks.append(('Low Temperature Risk', 'Average temperature below optimal range'))
|
| 365 |
-
if temp_std > 5:
|
| 366 |
-
risks.append(('Temperature Volatility Risk', 'High temperature variations observed'))
|
| 367 |
-
|
| 368 |
-
# Humidity risks
|
| 369 |
-
humidity_mean = df['humidity'].mean()
|
| 370 |
-
if humidity_mean > self.optimal_conditions['humidity']['max']:
|
| 371 |
-
risks.append(('High Humidity Risk', 'Average humidity above optimal range'))
|
| 372 |
-
elif humidity_mean < self.optimal_conditions['humidity']['min']:
|
| 373 |
-
risks.append(('Low Humidity Risk', 'Average humidity below optimal range'))
|
| 374 |
-
|
| 375 |
-
# Rainfall risks
|
| 376 |
-
daily_rainfall = df.groupby(df['date'].dt.date)['rainfall'].sum()
|
| 377 |
-
rainy_days = (daily_rainfall > 0).sum()
|
| 378 |
-
total_rainfall = daily_rainfall.sum()
|
| 379 |
-
|
| 380 |
-
if total_rainfall < self.optimal_conditions['rainfall']['min'] * len(daily_rainfall):
|
| 381 |
-
risks.append(('Drought Risk', 'Insufficient rainfall observed'))
|
| 382 |
-
elif total_rainfall > self.optimal_conditions['rainfall']['max'] * len(daily_rainfall):
|
| 383 |
-
risks.append(('Flood Risk', 'Excessive rainfall observed'))
|
| 384 |
-
|
| 385 |
-
if rainy_days < len(daily_rainfall) * 0.2:
|
| 386 |
-
risks.append(('Rainfall Distribution Risk', 'Too few rainy days'))
|
| 387 |
-
|
| 388 |
-
# NDVI risks
|
| 389 |
-
ndvi_mean = df['estimated_ndvi'].mean()
|
| 390 |
-
if ndvi_mean < self.optimal_conditions['ndvi']['min']:
|
| 391 |
-
risks.append(('Vegetation Health Risk', 'Low vegetation health indicated by NDVI'))
|
| 392 |
-
|
| 393 |
-
# Season-specific risks
|
| 394 |
-
current_season = df['season'].iloc[-1]
|
| 395 |
-
if current_season == 'Dry':
|
| 396 |
-
risks.append(('Seasonal Risk', 'Currently in dry season'))
|
| 397 |
-
|
| 398 |
-
return risks
|
| 399 |
-
|
| 400 |
-
def calculate_risk_score(self, df):
|
| 401 |
-
"""Calculate overall risk score based on all factors"""
|
| 402 |
-
risk_score = 0
|
| 403 |
-
weights = {
|
| 404 |
-
'temperature': 0.3,
|
| 405 |
-
'humidity': 0.2,
|
| 406 |
-
'rainfall': 0.2,
|
| 407 |
-
'ndvi': 0.2,
|
| 408 |
-
'season': 0.1
|
| 409 |
-
}
|
| 410 |
-
|
| 411 |
-
# Temperature component
|
| 412 |
-
temp_mean = df['temperature'].mean()
|
| 413 |
-
temp_optimal_range = self.optimal_conditions['temperature']
|
| 414 |
-
temp_score = 1 - min(abs(temp_mean - np.mean([temp_optimal_range['min'],
|
| 415 |
-
temp_optimal_range['max']])) / 10, 1)
|
| 416 |
-
|
| 417 |
-
# Humidity component
|
| 418 |
-
humidity_mean = df['humidity'].mean()
|
| 419 |
-
humidity_optimal_range = self.optimal_conditions['humidity']
|
| 420 |
-
humidity_score = 1 - min(abs(humidity_mean - np.mean([humidity_optimal_range['min'],
|
| 421 |
-
humidity_optimal_range['max']])) / 20, 1)
|
| 422 |
-
|
| 423 |
-
# Rainfall component
|
| 424 |
-
daily_rainfall = df.groupby(df['date'].dt.date)['rainfall'].sum()
|
| 425 |
-
rainfall_optimal_range = self.optimal_conditions['rainfall']
|
| 426 |
-
rainfall_score = 1 - min(abs(daily_rainfall.mean() - np.mean([rainfall_optimal_range['min'],
|
| 427 |
-
rainfall_optimal_range['max']])) / 5, 1)
|
| 428 |
-
|
| 429 |
-
# NDVI component
|
| 430 |
-
ndvi_mean = df['estimated_ndvi'].mean()
|
| 431 |
-
ndvi_optimal_range = self.optimal_conditions['ndvi']
|
| 432 |
-
ndvi_score = 1 - min(abs(ndvi_mean - np.mean([ndvi_optimal_range['min'],
|
| 433 |
-
ndvi_optimal_range['max']])) / 0.3, 1)
|
| 434 |
-
|
| 435 |
-
# Season component
|
| 436 |
-
current_season = df['season'].iloc[-1]
|
| 437 |
-
season_scores = {
|
| 438 |
-
'Main': 1.0,
|
| 439 |
-
'Early': 0.8,
|
| 440 |
-
'Late': 0.6,
|
| 441 |
-
'Dry': 0.4
|
| 442 |
-
}
|
| 443 |
-
season_score = season_scores.get(current_season, 0.5)
|
| 444 |
-
|
| 445 |
-
# Calculate weighted score
|
| 446 |
-
risk_score = (
|
| 447 |
-
weights['temperature'] * temp_score +
|
| 448 |
-
weights['humidity'] * humidity_score +
|
| 449 |
-
weights['rainfall'] * rainfall_score +
|
| 450 |
-
weights['ndvi'] * ndvi_score +
|
| 451 |
-
weights['season'] * season_score
|
| 452 |
-
)
|
| 453 |
-
|
| 454 |
-
return np.clip(risk_score, 0, 1)
|
|
|
|
| 66 |
data = response.json()
|
| 67 |
weather_data = {
|
| 68 |
'date': date,
|
| 69 |
+
'temperature': float(data['main']['temp']),
|
| 70 |
'humidity': float(data['main']['humidity']),
|
| 71 |
'rainfall': float(data.get('rain', {}).get('1h', 0)) * 24,
|
| 72 |
'type': 'historical',
|
|
|
|
| 85 |
response = requests.get(forecast_url)
|
| 86 |
if response.status_code == 200:
|
| 87 |
data = response.json()
|
|
|
|
| 88 |
daily_forecasts = {}
|
| 89 |
|
| 90 |
for item in data['list']:
|
|
|
|
| 96 |
'temps': [],
|
| 97 |
'humidity': [],
|
| 98 |
'rainfall': 0,
|
| 99 |
+
'descriptions': [],
|
| 100 |
+
'temp_mins': [],
|
| 101 |
+
'temp_maxs': []
|
| 102 |
}
|
| 103 |
|
| 104 |
daily_forecasts[day_key]['temps'].append(float(item['main']['temp']))
|
| 105 |
daily_forecasts[day_key]['humidity'].append(float(item['main']['humidity']))
|
| 106 |
daily_forecasts[day_key]['rainfall'] += float(item.get('rain', {}).get('3h', 0))
|
| 107 |
daily_forecasts[day_key]['descriptions'].append(item['weather'][0]['description'])
|
| 108 |
+
daily_forecasts[day_key]['temp_mins'].append(float(item['main']['temp_min']))
|
| 109 |
+
daily_forecasts[day_key]['temp_maxs'].append(float(item['main']['temp_max']))
|
| 110 |
|
| 111 |
# Create daily forecast entries
|
| 112 |
for day_key, day_data in daily_forecasts.items():
|
| 113 |
forecast = {
|
| 114 |
'date': datetime.combine(day_key, datetime.min.time()),
|
| 115 |
'temperature': np.mean(day_data['temps']),
|
| 116 |
+
'temp_min': min(day_data['temp_mins']),
|
| 117 |
+
'temp_max': max(day_data['temp_maxs']),
|
| 118 |
'humidity': np.mean(day_data['humidity']),
|
| 119 |
'rainfall': day_data['rainfall'],
|
| 120 |
'type': 'forecast',
|
|
|
|
| 122 |
}
|
| 123 |
forecast_data.append(forecast)
|
| 124 |
|
| 125 |
+
# Generate extended forecast using trends
|
| 126 |
+
if forecast_data:
|
| 127 |
+
last_date = max(d['date'] for d in forecast_data)
|
| 128 |
+
temp_trend = 0
|
| 129 |
+
humidity_trend = 0
|
| 130 |
+
rainfall_trend = 0
|
| 131 |
+
|
| 132 |
+
if len(historical_data) > 1:
|
| 133 |
+
historical_df = pd.DataFrame(historical_data)
|
| 134 |
+
temp_trend = stats.linregress(range(len(historical_df)), historical_df['temperature'])[0]
|
| 135 |
+
humidity_trend = stats.linregress(range(len(historical_df)), historical_df['humidity'])[0]
|
| 136 |
+
rainfall_trend = stats.linregress(range(len(historical_df)), historical_df['rainfall'])[0]
|
| 137 |
+
|
| 138 |
+
for day in range(1, forecast_days - len(forecast_data)):
|
| 139 |
+
base_forecast = forecast_data[-1]
|
| 140 |
+
date = last_date + timedelta(days=day)
|
| 141 |
+
|
| 142 |
+
extended_forecast = {
|
| 143 |
+
'date': date,
|
| 144 |
+
'temperature': base_forecast['temperature'] + temp_trend * day,
|
| 145 |
+
'temp_min': base_forecast['temp_min'] + temp_trend * day,
|
| 146 |
+
'temp_max': base_forecast['temp_max'] + temp_trend * day,
|
| 147 |
+
'humidity': base_forecast['humidity'] + humidity_trend * day,
|
| 148 |
+
'rainfall': max(0, base_forecast['rainfall'] + rainfall_trend * day),
|
| 149 |
+
'type': 'forecast_extended',
|
| 150 |
+
'description': 'Extended Forecast'
|
| 151 |
+
}
|
| 152 |
+
forecast_data.append(extended_forecast)
|
| 153 |
+
|
| 154 |
except Exception as e:
|
| 155 |
print(f"Error fetching forecast data: {e}")
|
| 156 |
|
| 157 |
+
# Combine and process all data
|
| 158 |
all_data = pd.DataFrame(historical_data + forecast_data)
|
| 159 |
|
| 160 |
if not all_data.empty:
|
|
|
|
| 166 |
# Sort by date
|
| 167 |
all_data = all_data.sort_values('date')
|
| 168 |
|
| 169 |
+
# Calculate temperature range
|
| 170 |
+
all_data['temp_range'] = all_data['temp_max'] - all_data['temp_min']
|
| 171 |
+
|
| 172 |
+
# Add analysis columns
|
| 173 |
all_data['month'] = all_data['date'].dt.month
|
| 174 |
all_data['season'] = all_data['month'].map(self.tanzania_seasons)
|
| 175 |
|
|
|
|
| 178 |
all_data['humidity_7day_avg'] = all_data['humidity'].rolling(window=7, min_periods=1).mean()
|
| 179 |
all_data['rainfall_7day_avg'] = all_data['rainfall'].rolling(window=7, min_periods=1).mean()
|
| 180 |
|
| 181 |
+
# Calculate daily suitability and NDVI
|
| 182 |
all_data['daily_suitability'] = self.calculate_daily_suitability(all_data)
|
|
|
|
|
|
|
| 183 |
all_data['estimated_ndvi'] = self.estimate_ndvi(all_data)
|
| 184 |
|
| 185 |
+
return all_data
|
| 186 |
+
|
| 187 |
+
return pd.DataFrame()
|
| 188 |
+
|
| 189 |
+
def calculate_daily_suitability(self, df):
|
| 190 |
+
"""Calculate daily growing suitability"""
|
| 191 |
+
try:
|
| 192 |
+
# Temperature suitability
|
| 193 |
+
temp_suit = 1 - np.clip(abs(df['temperature'] - 25) / 10, 0, 1)
|
| 194 |
|
| 195 |
+
# Temperature range suitability
|
| 196 |
+
temp_range_suit = 1 - np.clip(df['temp_range'] / 15, 0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
|
| 198 |
+
# Humidity suitability
|
| 199 |
+
humidity_suit = 1 - np.clip(abs(df['humidity'] - 70) / 30, 0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
+
# Rainfall suitability
|
| 202 |
+
daily_rainfall_target = (self.optimal_conditions['rainfall']['min'] +
|
| 203 |
+
self.optimal_conditions['rainfall']['max']) / 2
|
| 204 |
+
rainfall_suit = 1 - np.clip(abs(df['rainfall'] - daily_rainfall_target) /
|
| 205 |
+
daily_rainfall_target, 0, 1)
|
| 206 |
|
| 207 |
+
# Combine scores with weights
|
| 208 |
+
suitability = (
|
| 209 |
+
0.35 * temp_suit +
|
| 210 |
+
0.15 * temp_range_suit +
|
| 211 |
+
0.25 * humidity_suit +
|
| 212 |
+
0.25 * rainfall_suit
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
return np.clip(suitability, 0, 1)
|
| 216 |
+
|
| 217 |
+
except Exception as e:
|
| 218 |
+
print(f"Error calculating suitability: {e}")
|
| 219 |
+
return pd.Series(0.5, index=df.index)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
def estimate_ndvi(self, weather_data):
|
| 222 |
+
"""Estimate NDVI based on weather conditions"""
|
| 223 |
+
try:
|
| 224 |
+
# Normalize weather parameters
|
| 225 |
+
normalized_temp = (weather_data['temperature'] - 15) / (30 - 15)
|
| 226 |
+
normalized_humidity = (weather_data['humidity'] - 50) / (80 - 50)
|
| 227 |
+
normalized_rainfall = weather_data['rainfall'] / 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
+
# Season adjustment factors
|
| 230 |
+
season_factors = {
|
| 231 |
+
'Main': 1.0,
|
| 232 |
+
'Early': 0.8,
|
| 233 |
+
'Late': 0.7,
|
| 234 |
+
'Dry': 0.5
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
# Apply season adjustments
|
| 238 |
+
season_multiplier = weather_data['season'].map(season_factors)
|
| 239 |
+
|
| 240 |
+
# Calculate estimated NDVI
|
| 241 |
+
estimated_ndvi = (
|
| 242 |
+
0.4 * normalized_temp +
|
| 243 |
+
0.3 * normalized_humidity +
|
| 244 |
+
0.3 * normalized_rainfall
|
| 245 |
+
) * season_multiplier
|
| 246 |
+
|
| 247 |
+
return np.clip(estimated_ndvi, -1, 1)
|
| 248 |
+
|
| 249 |
+
except Exception as e:
|
| 250 |
+
print(f"Error estimating NDVI: {e}")
|
| 251 |
+
return pd.Series(0, index=weather_data.index)
|
| 252 |
|
| 253 |
def analyze_trends(self, df):
|
| 254 |
"""Analyze weather trends and patterns"""
|
|
|
|
| 264 |
'temperature': {
|
| 265 |
'mean': historical['temperature'].mean(),
|
| 266 |
'std': historical['temperature'].std(),
|
| 267 |
+
'trend': stats.linregress(range(len(historical)),
|
| 268 |
+
historical['temperature'])[0]
|
| 269 |
},
|
| 270 |
'humidity': {
|
| 271 |
'mean': historical['humidity'].mean(),
|
| 272 |
'std': historical['humidity'].std(),
|
| 273 |
+
'trend': stats.linregress(range(len(historical)),
|
| 274 |
+
historical['humidity'])[0]
|
| 275 |
},
|
| 276 |
'rainfall': {
|
| 277 |
'mean': historical['rainfall'].mean(),
|
| 278 |
'std': historical['rainfall'].std(),
|
| 279 |
+
'trend': stats.linregress(range(len(historical)),
|
| 280 |
+
historical['rainfall'])[0]
|
| 281 |
},
|
| 282 |
'ndvi': {
|
| 283 |
'mean': historical['estimated_ndvi'].mean(),
|
| 284 |
'std': historical['estimated_ndvi'].std(),
|
| 285 |
+
'trend': stats.linregress(range(len(historical)),
|
| 286 |
+
historical['estimated_ndvi'])[0]
|
| 287 |
}
|
| 288 |
}
|
| 289 |
}
|
|
|
|
| 292 |
analysis['forecast'] = {
|
| 293 |
'temperature': {
|
| 294 |
'mean': forecast['temperature'].mean(),
|
| 295 |
+
'std': forecast['temperature'].std()
|
|
|
|
| 296 |
},
|
| 297 |
'humidity': {
|
| 298 |
'mean': forecast['humidity'].mean(),
|
| 299 |
'std': forecast['humidity'].std()
|
| 300 |
+
},
|
| 301 |
'rainfall': {
|
| 302 |
'mean': forecast['rainfall'].mean(),
|
| 303 |
+
'std': forecast['rainfall'].std()
|
|
|
|
| 304 |
},
|
| 305 |
'ndvi': {
|
| 306 |
'mean': forecast['estimated_ndvi'].mean(),
|
| 307 |
'std': forecast['estimated_ndvi'].std()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
}
|
| 309 |
}
|
| 310 |
+
|
| 311 |
return analysis
|
| 312 |
+
|
| 313 |
except Exception as e:
|
| 314 |
print(f"Error in trend analysis: {e}")
|
| 315 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|