Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# Load pre-trained Sentence Transformer model
|
10 |
+
model = SentenceTransformer('LaBSE')
|
11 |
+
|
12 |
+
# Load questions and answers from the CSV file
|
13 |
+
df = pd.read_csv('combined_questions_and_answers.csv')
|
14 |
+
|
15 |
+
# Encode all questions in the dataset
|
16 |
+
question_embeddings = model.encode(df['Question'].tolist())
|
17 |
+
|
18 |
+
# Hugging Face API details for Meta-Llama 70B
|
19 |
+
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-70B"
|
20 |
+
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
|
21 |
+
|
22 |
+
# Function to call Hugging Face API to refine and translate text
|
23 |
+
def refine_text(prompt):
|
24 |
+
payload = {
|
25 |
+
"inputs": prompt,
|
26 |
+
"parameters": {
|
27 |
+
"max_new_tokens": 800,
|
28 |
+
"temperature": 0.7
|
29 |
+
}
|
30 |
+
}
|
31 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
32 |
+
response_json = response.json()
|
33 |
+
if isinstance(response_json, list) and len(response_json) > 0:
|
34 |
+
return response_json[0].get('generated_text', '')
|
35 |
+
return "Error in refining text."
|
36 |
+
|
37 |
+
# Function to find the most similar question and provide the answer
|
38 |
+
def get_answer(user_question, threshold=0.30):
|
39 |
+
# Encode the user question
|
40 |
+
user_embedding = model.encode(user_question)
|
41 |
+
|
42 |
+
# Calculate cosine similarities
|
43 |
+
similarities = cosine_similarity([user_embedding], question_embeddings)
|
44 |
+
|
45 |
+
# Find the most similar question
|
46 |
+
max_similarity = np.max(similarities)
|
47 |
+
if max_similarity > threshold:
|
48 |
+
# Get the index of the most similar question
|
49 |
+
similar_question_idx = np.argmax(similarities)
|
50 |
+
# Retrieve the corresponding answer
|
51 |
+
answer = df.iloc[similar_question_idx]['Answer']
|
52 |
+
# Refine the answer using Meta-Llama 70B
|
53 |
+
refined_answer = refine_text(f"Refine this answer: {answer}")
|
54 |
+
return refined_answer, max_similarity
|
55 |
+
else:
|
56 |
+
return "The question appears to be out of domain. Kindly ask questions related to blood donations.", max_similarity
|
57 |
+
|
58 |
+
# Gradio app
|
59 |
+
def gradio_app(user_question):
|
60 |
+
answer, similarity = get_answer(user_question)
|
61 |
+
return f"Similarity: {similarity}\nAnswer: {answer}"
|
62 |
+
|
63 |
+
# Launch the Gradio app
|
64 |
+
iface = gr.Interface(
|
65 |
+
fn=gradio_app,
|
66 |
+
inputs=gr.Textbox(label="Enter your question"),
|
67 |
+
outputs=gr.Textbox(label="Answer"),
|
68 |
+
title="Blood Donation Q&A",
|
69 |
+
description="Ask questions related to blood donation and get answers.",
|
70 |
+
)
|
71 |
+
|
72 |
+
iface.launch()
|