Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import os | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| from sentence_transformers import SentenceTransformer | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| import numpy as np | |
| import pandas as pd | |
| # Load pre-trained Sentence Transformer model | |
| model_sentence_transformer = SentenceTransformer('LaBSE') | |
| # Load questions and answers from the CSV file | |
| df = pd.read_csv('combined_questions_and_answers.csv') | |
| # Encode all questions in the dataset | |
| question_embeddings = model_sentence_transformer.encode(df['Question'].tolist()) | |
| # Hugging Face API details for Meta-Llama 3B | |
| HF_TOKEN = os.environ.get("HUGGINGFACE_API_KEY", None) | |
| if not HF_TOKEN: | |
| raise ValueError("Hugging Face API key not found in environment variables. Please set the HUGGINGFACE_API_KEY environment variable.") | |
| # Load the tokenizer and model with authentication | |
| tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", use_auth_token=HF_TOKEN) | |
| model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", use_auth_token=HF_TOKEN, device_map="auto") | |
| # Function to refine and translate text using Meta-Llama 3B | |
| def refine_text(prompt): | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| outputs = model.generate(**inputs, max_new_tokens=50) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Function to find the most similar question and provide the answer | |
| def get_answer(user_question, threshold=0.30): | |
| # Encode the user question | |
| user_embedding = model_sentence_transformer.encode(user_question) | |
| # Calculate cosine similarities | |
| similarities = cosine_similarity([user_embedding], question_embeddings) | |
| # Find the most similar question | |
| max_similarity = np.max(similarities) | |
| if (max_similarity > threshold): | |
| # Get the index of the most similar question | |
| similar_question_idx = np.argmax(similarities) | |
| # Retrieve the corresponding answer | |
| answer = df.iloc[similar_question_idx]['Answer'] | |
| # Refine the answer using Meta-Llama 3B | |
| refined_answer = refine_text(f"Refine this answer: {answer}") | |
| return refined_answer, max_similarity | |
| else: | |
| return "The question appears to be out of domain. Kindly ask questions related to blood donations.", max_similarity | |
| # Gradio app | |
| def gradio_app(user_question): | |
| answer, similarity = get_answer(user_question) | |
| return f"Similarity: {similarity}\nAnswer: {answer}" | |
| # Launch the Gradio app | |
| iface = gr.Interface( | |
| fn=gradio_app, | |
| inputs=gr.Textbox(label="Enter your question"), | |
| outputs=gr.Textbox(label="Answer"), | |
| title="Blood Donation Q&A", | |
| description="Ask questions related to blood donation and get answers.", | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |