Spaces:
Sleeping
Sleeping
| # original: https://github.com/NVIDIA/pix2pixHD/blob/master/models/networks.py | |
| import collections | |
| from functools import partial | |
| import functools | |
| import logging | |
| from collections import defaultdict | |
| import numpy as np | |
| import torch.nn as nn | |
| from saicinpainting.training.modules.base import BaseDiscriminator, deconv_factory, get_conv_block_ctor, get_norm_layer, get_activation | |
| from saicinpainting.training.modules.ffc import FFCResnetBlock | |
| from saicinpainting.training.modules.multidilated_conv import MultidilatedConv | |
| class DotDict(defaultdict): | |
| # https://stackoverflow.com/questions/2352181/how-to-use-a-dot-to-access-members-of-dictionary | |
| """dot.notation access to dictionary attributes""" | |
| __getattr__ = defaultdict.get | |
| __setattr__ = defaultdict.__setitem__ | |
| __delattr__ = defaultdict.__delitem__ | |
| class Identity(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| return x | |
| class ResnetBlock(nn.Module): | |
| def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default', | |
| dilation=1, in_dim=None, groups=1, second_dilation=None): | |
| super(ResnetBlock, self).__init__() | |
| self.in_dim = in_dim | |
| self.dim = dim | |
| if second_dilation is None: | |
| second_dilation = dilation | |
| self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout, | |
| conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups, | |
| second_dilation=second_dilation) | |
| if self.in_dim is not None: | |
| self.input_conv = nn.Conv2d(in_dim, dim, 1) | |
| self.out_channnels = dim | |
| def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default', | |
| dilation=1, in_dim=None, groups=1, second_dilation=1): | |
| conv_layer = get_conv_block_ctor(conv_kind) | |
| conv_block = [] | |
| p = 0 | |
| if padding_type == 'reflect': | |
| conv_block += [nn.ReflectionPad2d(dilation)] | |
| elif padding_type == 'replicate': | |
| conv_block += [nn.ReplicationPad2d(dilation)] | |
| elif padding_type == 'zero': | |
| p = dilation | |
| else: | |
| raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
| if in_dim is None: | |
| in_dim = dim | |
| conv_block += [conv_layer(in_dim, dim, kernel_size=3, padding=p, dilation=dilation), | |
| norm_layer(dim), | |
| activation] | |
| if use_dropout: | |
| conv_block += [nn.Dropout(0.5)] | |
| p = 0 | |
| if padding_type == 'reflect': | |
| conv_block += [nn.ReflectionPad2d(second_dilation)] | |
| elif padding_type == 'replicate': | |
| conv_block += [nn.ReplicationPad2d(second_dilation)] | |
| elif padding_type == 'zero': | |
| p = second_dilation | |
| else: | |
| raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
| conv_block += [conv_layer(dim, dim, kernel_size=3, padding=p, dilation=second_dilation, groups=groups), | |
| norm_layer(dim)] | |
| return nn.Sequential(*conv_block) | |
| def forward(self, x): | |
| x_before = x | |
| if self.in_dim is not None: | |
| x = self.input_conv(x) | |
| out = x + self.conv_block(x_before) | |
| return out | |
| class ResnetBlock5x5(nn.Module): | |
| def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False, conv_kind='default', | |
| dilation=1, in_dim=None, groups=1, second_dilation=None): | |
| super(ResnetBlock5x5, self).__init__() | |
| self.in_dim = in_dim | |
| self.dim = dim | |
| if second_dilation is None: | |
| second_dilation = dilation | |
| self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, activation, use_dropout, | |
| conv_kind=conv_kind, dilation=dilation, in_dim=in_dim, groups=groups, | |
| second_dilation=second_dilation) | |
| if self.in_dim is not None: | |
| self.input_conv = nn.Conv2d(in_dim, dim, 1) | |
| self.out_channnels = dim | |
| def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout, conv_kind='default', | |
| dilation=1, in_dim=None, groups=1, second_dilation=1): | |
| conv_layer = get_conv_block_ctor(conv_kind) | |
| conv_block = [] | |
| p = 0 | |
| if padding_type == 'reflect': | |
| conv_block += [nn.ReflectionPad2d(dilation * 2)] | |
| elif padding_type == 'replicate': | |
| conv_block += [nn.ReplicationPad2d(dilation * 2)] | |
| elif padding_type == 'zero': | |
| p = dilation * 2 | |
| else: | |
| raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
| if in_dim is None: | |
| in_dim = dim | |
| conv_block += [conv_layer(in_dim, dim, kernel_size=5, padding=p, dilation=dilation), | |
| norm_layer(dim), | |
| activation] | |
| if use_dropout: | |
| conv_block += [nn.Dropout(0.5)] | |
| p = 0 | |
| if padding_type == 'reflect': | |
| conv_block += [nn.ReflectionPad2d(second_dilation * 2)] | |
| elif padding_type == 'replicate': | |
| conv_block += [nn.ReplicationPad2d(second_dilation * 2)] | |
| elif padding_type == 'zero': | |
| p = second_dilation * 2 | |
| else: | |
| raise NotImplementedError('padding [%s] is not implemented' % padding_type) | |
| conv_block += [conv_layer(dim, dim, kernel_size=5, padding=p, dilation=second_dilation, groups=groups), | |
| norm_layer(dim)] | |
| return nn.Sequential(*conv_block) | |
| def forward(self, x): | |
| x_before = x | |
| if self.in_dim is not None: | |
| x = self.input_conv(x) | |
| out = x + self.conv_block(x_before) | |
| return out | |
| class MultidilatedResnetBlock(nn.Module): | |
| def __init__(self, dim, padding_type, conv_layer, norm_layer, activation=nn.ReLU(True), use_dropout=False): | |
| super().__init__() | |
| self.conv_block = self.build_conv_block(dim, padding_type, conv_layer, norm_layer, activation, use_dropout) | |
| def build_conv_block(self, dim, padding_type, conv_layer, norm_layer, activation, use_dropout, dilation=1): | |
| conv_block = [] | |
| conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type), | |
| norm_layer(dim), | |
| activation] | |
| if use_dropout: | |
| conv_block += [nn.Dropout(0.5)] | |
| conv_block += [conv_layer(dim, dim, kernel_size=3, padding_mode=padding_type), | |
| norm_layer(dim)] | |
| return nn.Sequential(*conv_block) | |
| def forward(self, x): | |
| out = x + self.conv_block(x) | |
| return out | |
| class MultiDilatedGlobalGenerator(nn.Module): | |
| def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, | |
| n_blocks=3, norm_layer=nn.BatchNorm2d, | |
| padding_type='reflect', conv_kind='default', | |
| deconv_kind='convtranspose', activation=nn.ReLU(True), | |
| up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True), | |
| add_out_act=True, max_features=1024, multidilation_kwargs={}, | |
| ffc_positions=None, ffc_kwargs={}): | |
| assert (n_blocks >= 0) | |
| super().__init__() | |
| conv_layer = get_conv_block_ctor(conv_kind) | |
| resnet_conv_layer = functools.partial(get_conv_block_ctor('multidilated'), **multidilation_kwargs) | |
| norm_layer = get_norm_layer(norm_layer) | |
| if affine is not None: | |
| norm_layer = partial(norm_layer, affine=affine) | |
| up_norm_layer = get_norm_layer(up_norm_layer) | |
| if affine is not None: | |
| up_norm_layer = partial(up_norm_layer, affine=affine) | |
| model = [nn.ReflectionPad2d(3), | |
| conv_layer(input_nc, ngf, kernel_size=7, padding=0), | |
| norm_layer(ngf), | |
| activation] | |
| identity = Identity() | |
| ### downsample | |
| for i in range(n_downsampling): | |
| mult = 2 ** i | |
| model += [conv_layer(min(max_features, ngf * mult), | |
| min(max_features, ngf * mult * 2), | |
| kernel_size=3, stride=2, padding=1), | |
| norm_layer(min(max_features, ngf * mult * 2)), | |
| activation] | |
| mult = 2 ** n_downsampling | |
| feats_num_bottleneck = min(max_features, ngf * mult) | |
| ### resnet blocks | |
| for i in range(n_blocks): | |
| if ffc_positions is not None and i in ffc_positions: | |
| model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU, | |
| inline=True, **ffc_kwargs)] | |
| model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type, | |
| conv_layer=resnet_conv_layer, activation=activation, | |
| norm_layer=norm_layer)] | |
| ### upsample | |
| for i in range(n_downsampling): | |
| mult = 2 ** (n_downsampling - i) | |
| model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features) | |
| model += [nn.ReflectionPad2d(3), | |
| nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] | |
| if add_out_act: | |
| model.append(get_activation('tanh' if add_out_act is True else add_out_act)) | |
| self.model = nn.Sequential(*model) | |
| def forward(self, input): | |
| return self.model(input) | |
| class ConfigGlobalGenerator(nn.Module): | |
| def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, | |
| n_blocks=3, norm_layer=nn.BatchNorm2d, | |
| padding_type='reflect', conv_kind='default', | |
| deconv_kind='convtranspose', activation=nn.ReLU(True), | |
| up_norm_layer=nn.BatchNorm2d, affine=None, up_activation=nn.ReLU(True), | |
| add_out_act=True, max_features=1024, | |
| manual_block_spec=[], | |
| resnet_block_kind='multidilatedresnetblock', | |
| resnet_conv_kind='multidilated', | |
| resnet_dilation=1, | |
| multidilation_kwargs={}): | |
| assert (n_blocks >= 0) | |
| super().__init__() | |
| conv_layer = get_conv_block_ctor(conv_kind) | |
| resnet_conv_layer = functools.partial(get_conv_block_ctor(resnet_conv_kind), **multidilation_kwargs) | |
| norm_layer = get_norm_layer(norm_layer) | |
| if affine is not None: | |
| norm_layer = partial(norm_layer, affine=affine) | |
| up_norm_layer = get_norm_layer(up_norm_layer) | |
| if affine is not None: | |
| up_norm_layer = partial(up_norm_layer, affine=affine) | |
| model = [nn.ReflectionPad2d(3), | |
| conv_layer(input_nc, ngf, kernel_size=7, padding=0), | |
| norm_layer(ngf), | |
| activation] | |
| identity = Identity() | |
| ### downsample | |
| for i in range(n_downsampling): | |
| mult = 2 ** i | |
| model += [conv_layer(min(max_features, ngf * mult), | |
| min(max_features, ngf * mult * 2), | |
| kernel_size=3, stride=2, padding=1), | |
| norm_layer(min(max_features, ngf * mult * 2)), | |
| activation] | |
| mult = 2 ** n_downsampling | |
| feats_num_bottleneck = min(max_features, ngf * mult) | |
| if len(manual_block_spec) == 0: | |
| manual_block_spec = [ | |
| DotDict(lambda : None, { | |
| 'n_blocks': n_blocks, | |
| 'use_default': True}) | |
| ] | |
| ### resnet blocks | |
| for block_spec in manual_block_spec: | |
| def make_and_add_blocks(model, block_spec): | |
| block_spec = DotDict(lambda : None, block_spec) | |
| if not block_spec.use_default: | |
| resnet_conv_layer = functools.partial(get_conv_block_ctor(block_spec.resnet_conv_kind), **block_spec.multidilation_kwargs) | |
| resnet_conv_kind = block_spec.resnet_conv_kind | |
| resnet_block_kind = block_spec.resnet_block_kind | |
| if block_spec.resnet_dilation is not None: | |
| resnet_dilation = block_spec.resnet_dilation | |
| for i in range(block_spec.n_blocks): | |
| if resnet_block_kind == "multidilatedresnetblock": | |
| model += [MultidilatedResnetBlock(feats_num_bottleneck, padding_type=padding_type, | |
| conv_layer=resnet_conv_layer, activation=activation, | |
| norm_layer=norm_layer)] | |
| if resnet_block_kind == "resnetblock": | |
| model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, | |
| conv_kind=resnet_conv_kind)] | |
| if resnet_block_kind == "resnetblock5x5": | |
| model += [ResnetBlock5x5(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, | |
| conv_kind=resnet_conv_kind)] | |
| if resnet_block_kind == "resnetblockdwdil": | |
| model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, | |
| conv_kind=resnet_conv_kind, dilation=resnet_dilation, second_dilation=resnet_dilation)] | |
| make_and_add_blocks(model, block_spec) | |
| ### upsample | |
| for i in range(n_downsampling): | |
| mult = 2 ** (n_downsampling - i) | |
| model += deconv_factory(deconv_kind, ngf, mult, up_norm_layer, up_activation, max_features) | |
| model += [nn.ReflectionPad2d(3), | |
| nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] | |
| if add_out_act: | |
| model.append(get_activation('tanh' if add_out_act is True else add_out_act)) | |
| self.model = nn.Sequential(*model) | |
| def forward(self, input): | |
| return self.model(input) | |
| def make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs): | |
| blocks = [] | |
| for i in range(dilated_blocks_n): | |
| if dilation_block_kind == 'simple': | |
| blocks.append(ResnetBlock(**dilated_block_kwargs, dilation=2 ** (i + 1))) | |
| elif dilation_block_kind == 'multi': | |
| blocks.append(MultidilatedResnetBlock(**dilated_block_kwargs)) | |
| else: | |
| raise ValueError(f'dilation_block_kind could not be "{dilation_block_kind}"') | |
| return blocks | |
| class GlobalGenerator(nn.Module): | |
| def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, | |
| padding_type='reflect', conv_kind='default', activation=nn.ReLU(True), | |
| up_norm_layer=nn.BatchNorm2d, affine=None, | |
| up_activation=nn.ReLU(True), dilated_blocks_n=0, dilated_blocks_n_start=0, | |
| dilated_blocks_n_middle=0, | |
| add_out_act=True, | |
| max_features=1024, is_resblock_depthwise=False, | |
| ffc_positions=None, ffc_kwargs={}, dilation=1, second_dilation=None, | |
| dilation_block_kind='simple', multidilation_kwargs={}): | |
| assert (n_blocks >= 0) | |
| super().__init__() | |
| conv_layer = get_conv_block_ctor(conv_kind) | |
| norm_layer = get_norm_layer(norm_layer) | |
| if affine is not None: | |
| norm_layer = partial(norm_layer, affine=affine) | |
| up_norm_layer = get_norm_layer(up_norm_layer) | |
| if affine is not None: | |
| up_norm_layer = partial(up_norm_layer, affine=affine) | |
| if ffc_positions is not None: | |
| ffc_positions = collections.Counter(ffc_positions) | |
| model = [nn.ReflectionPad2d(3), | |
| conv_layer(input_nc, ngf, kernel_size=7, padding=0), | |
| norm_layer(ngf), | |
| activation] | |
| identity = Identity() | |
| ### downsample | |
| for i in range(n_downsampling): | |
| mult = 2 ** i | |
| model += [conv_layer(min(max_features, ngf * mult), | |
| min(max_features, ngf * mult * 2), | |
| kernel_size=3, stride=2, padding=1), | |
| norm_layer(min(max_features, ngf * mult * 2)), | |
| activation] | |
| mult = 2 ** n_downsampling | |
| feats_num_bottleneck = min(max_features, ngf * mult) | |
| dilated_block_kwargs = dict(dim=feats_num_bottleneck, padding_type=padding_type, | |
| activation=activation, norm_layer=norm_layer) | |
| if dilation_block_kind == 'simple': | |
| dilated_block_kwargs['conv_kind'] = conv_kind | |
| elif dilation_block_kind == 'multi': | |
| dilated_block_kwargs['conv_layer'] = functools.partial( | |
| get_conv_block_ctor('multidilated'), **multidilation_kwargs) | |
| # dilated blocks at the start of the bottleneck sausage | |
| if dilated_blocks_n_start is not None and dilated_blocks_n_start > 0: | |
| model += make_dil_blocks(dilated_blocks_n_start, dilation_block_kind, dilated_block_kwargs) | |
| # resnet blocks | |
| for i in range(n_blocks): | |
| # dilated blocks at the middle of the bottleneck sausage | |
| if i == n_blocks // 2 and dilated_blocks_n_middle is not None and dilated_blocks_n_middle > 0: | |
| model += make_dil_blocks(dilated_blocks_n_middle, dilation_block_kind, dilated_block_kwargs) | |
| if ffc_positions is not None and i in ffc_positions: | |
| for _ in range(ffc_positions[i]): # same position can occur more than once | |
| model += [FFCResnetBlock(feats_num_bottleneck, padding_type, norm_layer, activation_layer=nn.ReLU, | |
| inline=True, **ffc_kwargs)] | |
| if is_resblock_depthwise: | |
| resblock_groups = feats_num_bottleneck | |
| else: | |
| resblock_groups = 1 | |
| model += [ResnetBlock(feats_num_bottleneck, padding_type=padding_type, activation=activation, | |
| norm_layer=norm_layer, conv_kind=conv_kind, groups=resblock_groups, | |
| dilation=dilation, second_dilation=second_dilation)] | |
| # dilated blocks at the end of the bottleneck sausage | |
| if dilated_blocks_n is not None and dilated_blocks_n > 0: | |
| model += make_dil_blocks(dilated_blocks_n, dilation_block_kind, dilated_block_kwargs) | |
| # upsample | |
| for i in range(n_downsampling): | |
| mult = 2 ** (n_downsampling - i) | |
| model += [nn.ConvTranspose2d(min(max_features, ngf * mult), | |
| min(max_features, int(ngf * mult / 2)), | |
| kernel_size=3, stride=2, padding=1, output_padding=1), | |
| up_norm_layer(min(max_features, int(ngf * mult / 2))), | |
| up_activation] | |
| model += [nn.ReflectionPad2d(3), | |
| nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)] | |
| if add_out_act: | |
| model.append(get_activation('tanh' if add_out_act is True else add_out_act)) | |
| self.model = nn.Sequential(*model) | |
| def forward(self, input): | |
| return self.model(input) | |
| class GlobalGeneratorGated(GlobalGenerator): | |
| def __init__(self, *args, **kwargs): | |
| real_kwargs=dict( | |
| conv_kind='gated_bn_relu', | |
| activation=nn.Identity(), | |
| norm_layer=nn.Identity | |
| ) | |
| real_kwargs.update(kwargs) | |
| super().__init__(*args, **real_kwargs) | |
| class GlobalGeneratorFromSuperChannels(nn.Module): | |
| def __init__(self, input_nc, output_nc, n_downsampling, n_blocks, super_channels, norm_layer="bn", padding_type='reflect', add_out_act=True): | |
| super().__init__() | |
| self.n_downsampling = n_downsampling | |
| norm_layer = get_norm_layer(norm_layer) | |
| if type(norm_layer) == functools.partial: | |
| use_bias = (norm_layer.func == nn.InstanceNorm2d) | |
| else: | |
| use_bias = (norm_layer == nn.InstanceNorm2d) | |
| channels = self.convert_super_channels(super_channels) | |
| self.channels = channels | |
| model = [nn.ReflectionPad2d(3), | |
| nn.Conv2d(input_nc, channels[0], kernel_size=7, padding=0, bias=use_bias), | |
| norm_layer(channels[0]), | |
| nn.ReLU(True)] | |
| for i in range(n_downsampling): # add downsampling layers | |
| mult = 2 ** i | |
| model += [nn.Conv2d(channels[0+i], channels[1+i], kernel_size=3, stride=2, padding=1, bias=use_bias), | |
| norm_layer(channels[1+i]), | |
| nn.ReLU(True)] | |
| mult = 2 ** n_downsampling | |
| n_blocks1 = n_blocks // 3 | |
| n_blocks2 = n_blocks1 | |
| n_blocks3 = n_blocks - n_blocks1 - n_blocks2 | |
| for i in range(n_blocks1): | |
| c = n_downsampling | |
| dim = channels[c] | |
| model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer)] | |
| for i in range(n_blocks2): | |
| c = n_downsampling+1 | |
| dim = channels[c] | |
| kwargs = {} | |
| if i == 0: | |
| kwargs = {"in_dim": channels[c-1]} | |
| model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)] | |
| for i in range(n_blocks3): | |
| c = n_downsampling+2 | |
| dim = channels[c] | |
| kwargs = {} | |
| if i == 0: | |
| kwargs = {"in_dim": channels[c-1]} | |
| model += [ResnetBlock(dim, padding_type=padding_type, norm_layer=norm_layer, **kwargs)] | |
| for i in range(n_downsampling): # add upsampling layers | |
| mult = 2 ** (n_downsampling - i) | |
| model += [nn.ConvTranspose2d(channels[n_downsampling+3+i], | |
| channels[n_downsampling+3+i+1], | |
| kernel_size=3, stride=2, | |
| padding=1, output_padding=1, | |
| bias=use_bias), | |
| norm_layer(channels[n_downsampling+3+i+1]), | |
| nn.ReLU(True)] | |
| model += [nn.ReflectionPad2d(3)] | |
| model += [nn.Conv2d(channels[2*n_downsampling+3], output_nc, kernel_size=7, padding=0)] | |
| if add_out_act: | |
| model.append(get_activation('tanh' if add_out_act is True else add_out_act)) | |
| self.model = nn.Sequential(*model) | |
| def convert_super_channels(self, super_channels): | |
| n_downsampling = self.n_downsampling | |
| result = [] | |
| cnt = 0 | |
| if n_downsampling == 2: | |
| N1 = 10 | |
| elif n_downsampling == 3: | |
| N1 = 13 | |
| else: | |
| raise NotImplementedError | |
| for i in range(0, N1): | |
| if i in [1,4,7,10]: | |
| channel = super_channels[cnt] * (2 ** cnt) | |
| config = {'channel': channel} | |
| result.append(channel) | |
| logging.info(f"Downsample channels {result[-1]}") | |
| cnt += 1 | |
| for i in range(3): | |
| for counter, j in enumerate(range(N1 + i * 3, N1 + 3 + i * 3)): | |
| if len(super_channels) == 6: | |
| channel = super_channels[3] * 4 | |
| else: | |
| channel = super_channels[i + 3] * 4 | |
| config = {'channel': channel} | |
| if counter == 0: | |
| result.append(channel) | |
| logging.info(f"Bottleneck channels {result[-1]}") | |
| cnt = 2 | |
| for i in range(N1+9, N1+21): | |
| if i in [22, 25,28]: | |
| cnt -= 1 | |
| if len(super_channels) == 6: | |
| channel = super_channels[5 - cnt] * (2 ** cnt) | |
| else: | |
| channel = super_channels[7 - cnt] * (2 ** cnt) | |
| result.append(int(channel)) | |
| logging.info(f"Upsample channels {result[-1]}") | |
| return result | |
| def forward(self, input): | |
| return self.model(input) | |
| # Defines the PatchGAN discriminator with the specified arguments. | |
| class NLayerDiscriminator(BaseDiscriminator): | |
| def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d,): | |
| super().__init__() | |
| self.n_layers = n_layers | |
| kw = 4 | |
| padw = int(np.ceil((kw-1.0)/2)) | |
| sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), | |
| nn.LeakyReLU(0.2, True)]] | |
| nf = ndf | |
| for n in range(1, n_layers): | |
| nf_prev = nf | |
| nf = min(nf * 2, 512) | |
| cur_model = [] | |
| cur_model += [ | |
| nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw), | |
| norm_layer(nf), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| sequence.append(cur_model) | |
| nf_prev = nf | |
| nf = min(nf * 2, 512) | |
| cur_model = [] | |
| cur_model += [ | |
| nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), | |
| norm_layer(nf), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| sequence.append(cur_model) | |
| sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] | |
| for n in range(len(sequence)): | |
| setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) | |
| def get_all_activations(self, x): | |
| res = [x] | |
| for n in range(self.n_layers + 2): | |
| model = getattr(self, 'model' + str(n)) | |
| res.append(model(res[-1])) | |
| return res[1:] | |
| def forward(self, x): | |
| act = self.get_all_activations(x) | |
| return act[-1], act[:-1] | |
| class MultidilatedNLayerDiscriminator(BaseDiscriminator): | |
| def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, multidilation_kwargs={}): | |
| super().__init__() | |
| self.n_layers = n_layers | |
| kw = 4 | |
| padw = int(np.ceil((kw-1.0)/2)) | |
| sequence = [[nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), | |
| nn.LeakyReLU(0.2, True)]] | |
| nf = ndf | |
| for n in range(1, n_layers): | |
| nf_prev = nf | |
| nf = min(nf * 2, 512) | |
| cur_model = [] | |
| cur_model += [ | |
| MultidilatedConv(nf_prev, nf, kernel_size=kw, stride=2, padding=[2, 3], **multidilation_kwargs), | |
| norm_layer(nf), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| sequence.append(cur_model) | |
| nf_prev = nf | |
| nf = min(nf * 2, 512) | |
| cur_model = [] | |
| cur_model += [ | |
| nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), | |
| norm_layer(nf), | |
| nn.LeakyReLU(0.2, True) | |
| ] | |
| sequence.append(cur_model) | |
| sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] | |
| for n in range(len(sequence)): | |
| setattr(self, 'model'+str(n), nn.Sequential(*sequence[n])) | |
| def get_all_activations(self, x): | |
| res = [x] | |
| for n in range(self.n_layers + 2): | |
| model = getattr(self, 'model' + str(n)) | |
| res.append(model(res[-1])) | |
| return res[1:] | |
| def forward(self, x): | |
| act = self.get_all_activations(x) | |
| return act[-1], act[:-1] | |
| class NLayerDiscriminatorAsGen(NLayerDiscriminator): | |
| def forward(self, x): | |
| return super().forward(x)[0] | |