Spaces:
Sleeping
Sleeping
| #!/usr/bin/env python3 | |
| """Calculates the Frechet Inception Distance (FID) to evalulate GANs | |
| The FID metric calculates the distance between two distributions of images. | |
| Typically, we have summary statistics (mean & covariance matrix) of one | |
| of these distributions, while the 2nd distribution is given by a GAN. | |
| When run as a stand-alone program, it compares the distribution of | |
| images that are stored as PNG/JPEG at a specified location with a | |
| distribution given by summary statistics (in pickle format). | |
| The FID is calculated by assuming that X_1 and X_2 are the activations of | |
| the pool_3 layer of the inception net for generated samples and real world | |
| samples respectively. | |
| See --help to see further details. | |
| Code apapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead | |
| of Tensorflow | |
| Copyright 2018 Institute of Bioinformatics, JKU Linz | |
| Licensed under the Apache License, Version 2.0 (the "License"); | |
| you may not use this file except in compliance with the License. | |
| You may obtain a copy of the License at | |
| http://www.apache.org/licenses/LICENSE-2.0 | |
| Unless required by applicable law or agreed to in writing, software | |
| distributed under the License is distributed on an "AS IS" BASIS, | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| See the License for the specific language governing permissions and | |
| limitations under the License. | |
| """ | |
| import os | |
| import pathlib | |
| from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser | |
| import numpy as np | |
| import torch | |
| # from scipy.misc import imread | |
| from imageio import imread | |
| from PIL import Image, JpegImagePlugin | |
| from scipy import linalg | |
| from torch.nn.functional import adaptive_avg_pool2d | |
| from torchvision.transforms import CenterCrop, Compose, Resize, ToTensor | |
| try: | |
| from tqdm import tqdm | |
| except ImportError: | |
| # If not tqdm is not available, provide a mock version of it | |
| def tqdm(x): return x | |
| try: | |
| from .inception import InceptionV3 | |
| except ModuleNotFoundError: | |
| from inception import InceptionV3 | |
| parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) | |
| parser.add_argument('path', type=str, nargs=2, | |
| help=('Path to the generated images or ' | |
| 'to .npz statistic files')) | |
| parser.add_argument('--batch-size', type=int, default=50, | |
| help='Batch size to use') | |
| parser.add_argument('--dims', type=int, default=2048, | |
| choices=list(InceptionV3.BLOCK_INDEX_BY_DIM), | |
| help=('Dimensionality of Inception features to use. ' | |
| 'By default, uses pool3 features')) | |
| parser.add_argument('-c', '--gpu', default='', type=str, | |
| help='GPU to use (leave blank for CPU only)') | |
| parser.add_argument('--resize', default=256) | |
| transform = Compose([Resize(256), CenterCrop(256), ToTensor()]) | |
| def get_activations(files, model, batch_size=50, dims=2048, | |
| cuda=False, verbose=False, keep_size=False): | |
| """Calculates the activations of the pool_3 layer for all images. | |
| Params: | |
| -- files : List of image files paths | |
| -- model : Instance of inception model | |
| -- batch_size : Batch size of images for the model to process at once. | |
| Make sure that the number of samples is a multiple of | |
| the batch size, otherwise some samples are ignored. This | |
| behavior is retained to match the original FID score | |
| implementation. | |
| -- dims : Dimensionality of features returned by Inception | |
| -- cuda : If set to True, use GPU | |
| -- verbose : If set to True and parameter out_step is given, the number | |
| of calculated batches is reported. | |
| Returns: | |
| -- A numpy array of dimension (num images, dims) that contains the | |
| activations of the given tensor when feeding inception with the | |
| query tensor. | |
| """ | |
| model.eval() | |
| if len(files) % batch_size != 0: | |
| print(('Warning: number of images is not a multiple of the ' | |
| 'batch size. Some samples are going to be ignored.')) | |
| if batch_size > len(files): | |
| print(('Warning: batch size is bigger than the data size. ' | |
| 'Setting batch size to data size')) | |
| batch_size = len(files) | |
| n_batches = len(files) // batch_size | |
| n_used_imgs = n_batches * batch_size | |
| pred_arr = np.empty((n_used_imgs, dims)) | |
| for i in tqdm(range(n_batches)): | |
| if verbose: | |
| print('\rPropagating batch %d/%d' % (i + 1, n_batches), | |
| end='', flush=True) | |
| start = i * batch_size | |
| end = start + batch_size | |
| # # Official code goes below | |
| # images = np.array([imread(str(f)).astype(np.float32) | |
| # for f in files[start:end]]) | |
| # # Reshape to (n_images, 3, height, width) | |
| # images = images.transpose((0, 3, 1, 2)) | |
| # images /= 255 | |
| # batch = torch.from_numpy(images).type(torch.FloatTensor) | |
| # # | |
| t = transform if not keep_size else ToTensor() | |
| if isinstance(files[0], pathlib.PosixPath): | |
| images = [t(Image.open(str(f))) for f in files[start:end]] | |
| elif isinstance(files[0], Image.Image): | |
| images = [t(f) for f in files[start:end]] | |
| else: | |
| raise ValueError(f"Unknown data type for image: {type(files[0])}") | |
| batch = torch.stack(images) | |
| if cuda: | |
| batch = batch.cuda() | |
| pred = model(batch)[0] | |
| # If model output is not scalar, apply global spatial average pooling. | |
| # This happens if you choose a dimensionality not equal 2048. | |
| if pred.shape[2] != 1 or pred.shape[3] != 1: | |
| pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
| pred_arr[start:end] = pred.cpu().data.numpy().reshape(batch_size, -1) | |
| if verbose: | |
| print(' done') | |
| return pred_arr | |
| def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
| """Numpy implementation of the Frechet Distance. | |
| The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
| and X_2 ~ N(mu_2, C_2) is | |
| d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
| Stable version by Dougal J. Sutherland. | |
| Params: | |
| -- mu1 : Numpy array containing the activations of a layer of the | |
| inception net (like returned by the function 'get_predictions') | |
| for generated samples. | |
| -- mu2 : The sample mean over activations, precalculated on an | |
| representative data set. | |
| -- sigma1: The covariance matrix over activations for generated samples. | |
| -- sigma2: The covariance matrix over activations, precalculated on an | |
| representative data set. | |
| Returns: | |
| -- : The Frechet Distance. | |
| """ | |
| mu1 = np.atleast_1d(mu1) | |
| mu2 = np.atleast_1d(mu2) | |
| sigma1 = np.atleast_2d(sigma1) | |
| sigma2 = np.atleast_2d(sigma2) | |
| assert mu1.shape == mu2.shape, \ | |
| 'Training and test mean vectors have different lengths' | |
| assert sigma1.shape == sigma2.shape, \ | |
| 'Training and test covariances have different dimensions' | |
| diff = mu1 - mu2 | |
| # Product might be almost singular | |
| covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
| if not np.isfinite(covmean).all(): | |
| msg = ('fid calculation produces singular product; ' | |
| 'adding %s to diagonal of cov estimates') % eps | |
| print(msg) | |
| offset = np.eye(sigma1.shape[0]) * eps | |
| covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
| # Numerical error might give slight imaginary component | |
| if np.iscomplexobj(covmean): | |
| # if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
| if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-2): | |
| m = np.max(np.abs(covmean.imag)) | |
| raise ValueError('Imaginary component {}'.format(m)) | |
| covmean = covmean.real | |
| tr_covmean = np.trace(covmean) | |
| return (diff.dot(diff) + np.trace(sigma1) + | |
| np.trace(sigma2) - 2 * tr_covmean) | |
| def calculate_activation_statistics(files, model, batch_size=50, | |
| dims=2048, cuda=False, verbose=False, keep_size=False): | |
| """Calculation of the statistics used by the FID. | |
| Params: | |
| -- files : List of image files paths | |
| -- model : Instance of inception model | |
| -- batch_size : The images numpy array is split into batches with | |
| batch size batch_size. A reasonable batch size | |
| depends on the hardware. | |
| -- dims : Dimensionality of features returned by Inception | |
| -- cuda : If set to True, use GPU | |
| -- verbose : If set to True and parameter out_step is given, the | |
| number of calculated batches is reported. | |
| Returns: | |
| -- mu : The mean over samples of the activations of the pool_3 layer of | |
| the inception model. | |
| -- sigma : The covariance matrix of the activations of the pool_3 layer of | |
| the inception model. | |
| """ | |
| act = get_activations(files, model, batch_size, dims, cuda, verbose, keep_size=keep_size) | |
| mu = np.mean(act, axis=0) | |
| sigma = np.cov(act, rowvar=False) | |
| return mu, sigma | |
| def _compute_statistics_of_path(path, model, batch_size, dims, cuda): | |
| if path.endswith('.npz'): | |
| f = np.load(path) | |
| m, s = f['mu'][:], f['sigma'][:] | |
| f.close() | |
| else: | |
| path = pathlib.Path(path) | |
| files = list(path.glob('*.jpg')) + list(path.glob('*.png')) | |
| m, s = calculate_activation_statistics(files, model, batch_size, | |
| dims, cuda) | |
| return m, s | |
| def _compute_statistics_of_images(images, model, batch_size, dims, cuda, keep_size=False): | |
| if isinstance(images, list): # exact paths to files are provided | |
| m, s = calculate_activation_statistics(images, model, batch_size, | |
| dims, cuda, keep_size=keep_size) | |
| return m, s | |
| else: | |
| raise ValueError | |
| def calculate_fid_given_paths(paths, batch_size, cuda, dims): | |
| """Calculates the FID of two paths""" | |
| for p in paths: | |
| if not os.path.exists(p): | |
| raise RuntimeError('Invalid path: %s' % p) | |
| block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
| model = InceptionV3([block_idx]) | |
| if cuda: | |
| model.cuda() | |
| m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, | |
| dims, cuda) | |
| m2, s2 = _compute_statistics_of_path(paths[1], model, batch_size, | |
| dims, cuda) | |
| fid_value = calculate_frechet_distance(m1, s1, m2, s2) | |
| return fid_value | |
| def calculate_fid_given_images(images, batch_size, cuda, dims, use_globals=False, keep_size=False): | |
| if use_globals: | |
| global FID_MODEL # for multiprocessing | |
| for imgs in images: | |
| if isinstance(imgs, list) and isinstance(imgs[0], (Image.Image, JpegImagePlugin.JpegImageFile)): | |
| pass | |
| else: | |
| raise RuntimeError('Invalid images') | |
| block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims] | |
| if 'FID_MODEL' not in globals() or not use_globals: | |
| model = InceptionV3([block_idx]) | |
| if cuda: | |
| model.cuda() | |
| if use_globals: | |
| FID_MODEL = model | |
| else: | |
| model = FID_MODEL | |
| m1, s1 = _compute_statistics_of_images(images[0], model, batch_size, | |
| dims, cuda, keep_size=False) | |
| m2, s2 = _compute_statistics_of_images(images[1], model, batch_size, | |
| dims, cuda, keep_size=False) | |
| fid_value = calculate_frechet_distance(m1, s1, m2, s2) | |
| return fid_value | |
| if __name__ == '__main__': | |
| args = parser.parse_args() | |
| os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu | |
| fid_value = calculate_fid_given_paths(args.path, | |
| args.batch_size, | |
| args.gpu != '', | |
| args.dims) | |
| print('FID: ', fid_value) | |