Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import torch
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
-
from sahi.prediction import ObjectPrediction
|
6 |
-
from sahi.utils.cv import visualize_object_predictions, read_image
|
7 |
|
8 |
|
9 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
@@ -19,41 +17,13 @@ model.max_det = 1000
|
|
19 |
def detect(img):
|
20 |
|
21 |
|
22 |
-
results = model
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
for pred in image_predictions_in_xyxy_format:
|
30 |
-
x1, y1, x2, y2 = (
|
31 |
-
int(pred[0]),
|
32 |
-
int(pred[1]),
|
33 |
-
int(pred[2]),
|
34 |
-
int(pred[3]),
|
35 |
-
)
|
36 |
-
bbox = [x1, y1, x2, y2]
|
37 |
-
score = pred[4]
|
38 |
-
category_name = model.model.names[int(pred[5])]
|
39 |
-
category_id = pred[5]
|
40 |
-
object_prediction = ObjectPrediction(
|
41 |
-
bbox=bbox,
|
42 |
-
category_id=int(category_id),
|
43 |
-
score=score,
|
44 |
-
category_name=category_name,
|
45 |
-
)
|
46 |
-
object_prediction_list.append(object_prediction)
|
47 |
-
|
48 |
-
image = read_image(image)
|
49 |
-
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
50 |
-
return output_image['image']
|
51 |
-
|
52 |
-
def drawRectangles(image, dfResults):
|
53 |
-
for index, row in dfResults.iterrows():
|
54 |
-
print( (row['xmin'], row['ymin']))
|
55 |
-
image = cv2.rectangle(image, (row['xmin'], row['ymin']), (row['xmax'], row['ymax']), (255, 0, 0), 2)
|
56 |
-
return image
|
57 |
|
58 |
|
59 |
img = gr.inputs.Image(shape=(192, 192))
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
|
7 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
|
|
17 |
def detect(img):
|
18 |
|
19 |
|
20 |
+
results = model(img, size=640)
|
21 |
+
|
22 |
+
predictions = results.pred[0]
|
23 |
+
boxes = predictions[:, :4] # x1, y1, x2, y2
|
24 |
+
scores = predictions[:, 4]
|
25 |
+
categories = predictions[:, 5]
|
26 |
+
return img.save()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
img = gr.inputs.Image(shape=(192, 192))
|