Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import torch
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
|
7 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
@@ -17,15 +19,35 @@ model.max_det = 1000
|
|
17 |
def detect(img):
|
18 |
|
19 |
|
20 |
-
results = model(
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def drawRectangles(image, dfResults):
|
31 |
for index, row in dfResults.iterrows():
|
|
|
2 |
import cv2
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
+
from sahi.prediction import ObjectPrediction
|
6 |
+
from sahi.utils.cv import visualize_object_predictions, read_image
|
7 |
|
8 |
|
9 |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
|
|
19 |
def detect(img):
|
20 |
|
21 |
|
22 |
+
results = model.predict(image, imgsz=image_size, return_outputs=True)
|
23 |
+
|
24 |
+
|
25 |
+
object_prediction_list = []
|
26 |
+
for _, image_results in enumerate(results):
|
27 |
+
if len(image_results)!=0:
|
28 |
+
image_predictions_in_xyxy_format = image_results['det']
|
29 |
+
for pred in image_predictions_in_xyxy_format:
|
30 |
+
x1, y1, x2, y2 = (
|
31 |
+
int(pred[0]),
|
32 |
+
int(pred[1]),
|
33 |
+
int(pred[2]),
|
34 |
+
int(pred[3]),
|
35 |
+
)
|
36 |
+
bbox = [x1, y1, x2, y2]
|
37 |
+
score = pred[4]
|
38 |
+
category_name = model.model.names[int(pred[5])]
|
39 |
+
category_id = pred[5]
|
40 |
+
object_prediction = ObjectPrediction(
|
41 |
+
bbox=bbox,
|
42 |
+
category_id=int(category_id),
|
43 |
+
score=score,
|
44 |
+
category_name=category_name,
|
45 |
+
)
|
46 |
+
object_prediction_list.append(object_prediction)
|
47 |
+
|
48 |
+
image = read_image(image)
|
49 |
+
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
|
50 |
+
return output_image['image']
|
51 |
|
52 |
def drawRectangles(image, dfResults):
|
53 |
for index, row in dfResults.iterrows():
|