long1104's picture
Upload app.py
33cb156 verified
raw
history blame
16 kB
"""miniproject1_part4.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1019NliGG7hWr87uyV6I748EbERk7Jt0p
"""
import streamlit as st
import numpy as np
import numpy.linalg as la
import pickle
import os
import gdown
from sentence_transformers import SentenceTransformer
import matplotlib.pyplot as plt
import math
def cosine_similarity(x, y):
"""
Exponentiated cosine similarity
1. Compute cosine similarity
2. Exponentiate cosine similarity
3. Return exponentiated cosine similarity
(20 pts)
"""
##################################
### TODO: Add code here ##########
##################################
x_arr = np.atleast_2d(np.array(x))
y_arr = np.atleast_2d(np.array(y))
x_arr_mod = la.norm(x_arr, axis=1, keepdims=True)
y_arr_mod = la.norm(y_arr, axis=1, keepdims=True)
# np.exp((x_arr / x_arr_mod) @ (y_arr / y_arr_mod).T)
return np.exp((x_arr / x_arr_mod) @ (y_arr / y_arr_mod).T)
# Function to Load Glove Embeddings
def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
with open(glove_path, "rb") as f:
embeddings_dict = pickle.load(f, encoding="latin1")
return embeddings_dict
def get_model_id_gdrive(model_type):
word_index_id = None
embeddings_id = None
if model_type == "25d":
word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8"
embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2"
elif model_type == "50d":
embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ"
word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9"
elif model_type == "100d":
word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq"
embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp"
return word_index_id, embeddings_id
def download_glove_embeddings_gdrive(model_type):
# Get glove embeddings from google drive
word_index_id, embeddings_id = get_model_id_gdrive(model_type)
# Use gdown to get files from google drive
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
# Download word_index pickle file
print("Downloading word index dictionary....\n")
gdown.download(id=word_index_id, output=word_index_temp, quiet=False)
# Download embeddings numpy file
print("Donwloading embedings...\n\n")
gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False)
# @st.cache_data()
def load_glove_embeddings_gdrive(model_type):
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
# Load word index dictionary
word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")
# Load embeddings numpy
embeddings = np.load(embeddings_temp)
return word_index_dict, embeddings
#download_glove_embeddings_gdrive("50d")
#word_index_dict, embeddings = load_glove_embeddings_gdrive("50d")
#embeddings.shape
@st.cache_resource()
def load_sentence_transformer_model(model_name):
sentenceTransformer = SentenceTransformer(model_name)
return sentenceTransformer
def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"):
"""
Get sentence transformer embeddings for a sentence
"""
# 384 dimensional embedding
# Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
sentenceTransformer = load_sentence_transformer_model(model_name)
try:
return sentenceTransformer.encode(sentence)
except:
if model_name == "all-MiniLM-L6-v2":
return np.zeros(384)
else:
return np.zeros(512)
def get_glove_embeddings(word, word_index_dict, embeddings, model_type):
"""
Get glove embedding for a single word
"""
if word.lower() in word_index_dict:
return embeddings[word_index_dict[word.lower()]]
else:
return np.zeros(int(model_type.split("d")[0]))
def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50):
"""
Get averaged glove embeddings for a sentence
1. Split sentence into words
2. Get embeddings for each word
3. Add embeddings for each word
4. Divide by number of words
5. Return averaged embeddings
(20 pts)
"""
embedding = np.zeros(int(model_type.split("d")[0]))
##################################
##### TODO: Add code here ########
##################################
words = sentence.split()
# print(word_index_dict)
# print(embeddings)
for word in words:
embedding += get_glove_embeddings(word, word_index_dict, embeddings, model_type)
return embedding / max(len(words), 1.)
def get_category_embeddings(embeddings_metadata):
"""
Get embeddings for each category
1. Split categories into words
2. Get embeddings for each word
"""
model_name = embeddings_metadata["model_name"]
st.session_state["cat_embed_" + model_name] = {}
for category in st.session_state.categories.split(" "):
if model_name:
if not category in st.session_state["cat_embed_" + model_name]:
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name)
else:
if not category in st.session_state["cat_embed_" + model_name]:
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category)
def update_category_embeddings(embedings_metadata):
"""
Update embeddings for each category
"""
get_category_embeddings(embeddings_metadata)
def sorting_similarity(categories, input_embedding, categories_embeddings):
cosine_sim = {}
similarity_matrix = cosine_similarity(input_embedding, categories_embeddings)
ranking_indices = np.argsort(-similarity_matrix, axis=1)
sorted_indices = ranking_indices[0]
categories_sorting = np.array(categories)[list(sorted_indices)]
ranked_similarity_matrix = np.take_along_axis(similarity_matrix, ranking_indices, axis=1)
#for cat, score in zip(categories_sorting, ranked_similarity_matrix):
#cosine_sim[cat] = score
return tuple(zip(categories_sorting, ranked_similarity_matrix))
def get_sorted_cosine_similarity(sentence, embeddings_metadata):
"""
Get sorted cosine similarity between input sentence and categories
Steps:
1. Get embeddings for input sentence
2. Get embeddings for categories (if not found, update category embeddings)
3. Compute cosine similarity between input sentence and categories
4. Sort cosine similarity
5. Return sorted cosine similarity
(50 pts)
"""
categories = st.session_state.categories.split(" ")
cosine_sim = {}
if embeddings_metadata["embedding_model"] == "glove":
word_index_dict = embeddings_metadata["word_index_dict"]
embeddings = embeddings_metadata["embeddings"]
model_type = embeddings_metadata["model_type"]
input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search,
word_index_dict,
embeddings, model_type)
##########################################
## TODO: Get embeddings for categories ###
##########################################
categories_embeddings = []
for index in range(len(categories)):
cat = categories[index]
cat_embedding = get_glove_embeddings(cat,
word_index_dict,
embeddings,
model_type)
cosine_score = cosine_similarity(input_embedding, cat_embedding)
cosine_sim[index] = cosine_score[0][0]
else:
model_name = embeddings_metadata["model_name"]
if not "cat_embed_" + model_name in st.session_state:
get_category_embeddings(embeddings_metadata)
category_embeddings = st.session_state["cat_embed_" + model_name]
print("text_search = ", st.session_state.text_search)
if model_name:
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name)
else:
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search)
for index in range(len(categories)):
##########################################
# TODO: Compute cosine similarity between input sentence and categories
# TODO: Update category embeddings if category not found
##########################################
cat = categories[index]
if not cat in category_embeddings:
update_category_embeddings(embeddings_metadata)
cosine_score = cosine_similarity(input_embedding, category_embeddings[cat])
cosine_sim[index] = cosine_score[0][0]
cosine_sim = sorted(cosine_sim.items(), key=lambda x:x[1], reverse=True)
print(type(cosine_sim))
return list(cosine_sim)
def plot_piechart(sorted_cosine_scores_items):
sorted_cosine_scores = np.array([
sorted_cosine_scores_items[index][1]
for index in range(len(sorted_cosine_scores_items))
]
)
categories = st.session_state.categories.split(" ")
categories_sorted = [
categories[sorted_cosine_scores_items[index][0]]
for index in range(len(sorted_cosine_scores_items))
]
fig, ax = plt.subplots()
ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
st.pyplot(fig) # Figure
def plot_piechart_helper(sorted_cosine_scores_items):
sorted_cosine_scores = np.array(
[
sorted_cosine_scores_items[index][1]
for index in range(len(sorted_cosine_scores_items))
]
)
categories = st.session_state.categories.split(" ")
categories_sorted = [
categories[sorted_cosine_scores_items[index][0]]
for index in range(len(sorted_cosine_scores_items))
]
fig, ax = plt.subplots(figsize=(3, 3))
my_explode = np.zeros(len(categories_sorted))
my_explode[0] = 0.2
if len(categories_sorted) == 3:
my_explode[1] = 0.1 # explode this by 0.2
elif len(categories_sorted) > 3:
my_explode[2] = 0.05
ax.pie(
sorted_cosine_scores,
labels=categories_sorted,
autopct="%1.1f%%",
explode=my_explode,
)
return fig
def plot_piecharts(sorted_cosine_scores_models):
scores_list = []
categories = st.session_state.categories.split(" ")
index = 0
for model in sorted_cosine_scores_models:
scores_list.append(sorted_cosine_scores_models[model])
# scores_list[index] = np.array([scores_list[index][ind2][1] for ind2 in range(len(scores_list[index]))])
index += 1
if len(sorted_cosine_scores_models) == 2:
fig, (ax1, ax2) = plt.subplots(2)
categories_sorted = [
categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
]
sorted_scores = np.array(
[scores_list[0][index][1] for index in range(len(scores_list[0]))]
)
ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
categories_sorted = [
categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
]
sorted_scores = np.array(
[scores_list[1][index][1] for index in range(len(scores_list[1]))]
)
ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
st.pyplot(fig)
def plot_alatirchart(sorted_cosine_scores_models):
models = list(sorted_cosine_scores_models.keys())
tabs = st.tabs(models)
figs = {}
for model in models:
figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])
for index in range(len(tabs)):
with tabs[index]:
st.pyplot(figs[models[index]])
### Text Search ###
st.sidebar.title("GloVe Twitter")
st.sidebar.markdown(
"""
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
"""
)
model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1)
st.title("Search Based Retrieval Demo")
st.subheader(
"Pass in space separated categories you want this search demo to be about."
)
# st.selectbox(label="Pick the categories you want this search demo to be about...",
# options=("Flowers Colors Cars Weather Food", "Chocolate Milk", "Anger Joy Sad Frustration Worry Happiness", "Positive Negative"),
# key="categories"
# )
st.text_input(
label="Categories", key="categories", value="Flowers Colors Cars Weather Food"
)
print(st.session_state["categories"])
print(type(st.session_state["categories"]))
# print("Categories = ", categories)
# st.session_state.categories = categories
st.subheader("Pass in an input word or even a sentence")
text_search = st.text_input(
label="Input your sentence",
key="text_search",
value="Roses are red, trucks are blue, and Seattle is grey right now",
)
# st.session_state.text_search = text_search
# Download glove embeddings if it doesn't exist
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
print("Model type = ", model_type)
glove_path = "Data/glove_" + str(model_type) + ".pkl"
print("glove_path = ", glove_path)
# Download embeddings from google drive
with st.spinner("Downloading glove embeddings..."):
download_glove_embeddings_gdrive(model_type)
# Load glove embeddings
word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type)
# Find closest word to an input word
if st.session_state.text_search:
# Glove embeddings
print("Glove Embedding")
embeddings_metadata = {
"embedding_model": "glove",
"word_index_dict": word_index_dict,
"embeddings": embeddings,
"model_type": model_type,
}
with st.spinner("Obtaining Cosine similarity for Glove..."):
sorted_cosine_sim_glove = get_sorted_cosine_similarity(
st.session_state.text_search, embeddings_metadata
)
# Sentence transformer embeddings
print("Sentence Transformer Embedding")
embeddings_metadata = {"embedding_model": "transformers", "model_name": ""}
with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
sorted_cosine_sim_transformer = get_sorted_cosine_similarity(
st.session_state.text_search, embeddings_metadata
)
# Results and Plot Pie Chart for Glove
print("Categories are: ", st.session_state.categories)
st.subheader(
"Closest word I have between: "
+ st.session_state.categories
+ " as per different Embeddings"
)
print(sorted_cosine_sim_glove)
print(sorted_cosine_sim_transformer)
# print(sorted_distilbert)
# Altair Chart for all models
plot_alatirchart(
{
"glove_" + str(model_type): sorted_cosine_sim_glove,
"sentence_transformer_384": sorted_cosine_sim_transformer,
}
)
# "distilbert_512": sorted_distilbert})
st.write("")
st.write(
"Demo developed by [Dr. Karthik Mohan](https://www.linkedin.com/in/karthik-mohan-72a4b323/)"
)