Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""miniproject1_part4.ipynb
|
2 |
+
|
3 |
+
Automatically generated by Colaboratory.
|
4 |
+
|
5 |
+
Original file is located at
|
6 |
+
https://colab.research.google.com/drive/1019NliGG7hWr87uyV6I748EbERk7Jt0p
|
7 |
+
"""
|
8 |
+
|
9 |
+
import streamlit as st
|
10 |
+
import numpy as np
|
11 |
+
import numpy.linalg as la
|
12 |
+
import pickle
|
13 |
+
import os
|
14 |
+
import gdown
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import math
|
18 |
+
|
19 |
+
def cosine_similarity(x, y):
|
20 |
+
"""
|
21 |
+
Exponentiated cosine similarity
|
22 |
+
1. Compute cosine similarity
|
23 |
+
2. Exponentiate cosine similarity
|
24 |
+
3. Return exponentiated cosine similarity
|
25 |
+
(20 pts)
|
26 |
+
"""
|
27 |
+
##################################
|
28 |
+
### TODO: Add code here ##########
|
29 |
+
##################################
|
30 |
+
x_arr = np.atleast_2d(np.array(x))
|
31 |
+
y_arr = np.atleast_2d(np.array(y))
|
32 |
+
|
33 |
+
x_arr_mod = la.norm(x_arr, axis=1, keepdims=True)
|
34 |
+
y_arr_mod = la.norm(y_arr, axis=1, keepdims=True)
|
35 |
+
|
36 |
+
# np.exp((x_arr / x_arr_mod) @ (y_arr / y_arr_mod).T)
|
37 |
+
|
38 |
+
return np.exp((x_arr / x_arr_mod) @ (y_arr / y_arr_mod).T)
|
39 |
+
|
40 |
+
# Function to Load Glove Embeddings
|
41 |
+
def load_glove_embeddings(glove_path="Data/embeddings.pkl"):
|
42 |
+
with open(glove_path, "rb") as f:
|
43 |
+
embeddings_dict = pickle.load(f, encoding="latin1")
|
44 |
+
|
45 |
+
return embeddings_dict
|
46 |
+
|
47 |
+
def get_model_id_gdrive(model_type):
|
48 |
+
word_index_id = None
|
49 |
+
embeddings_id = None
|
50 |
+
|
51 |
+
if model_type == "25d":
|
52 |
+
word_index_id = "13qMXs3-oB9C6kfSRMwbAtzda9xuAUtt8"
|
53 |
+
embeddings_id = "1-RXcfBvWyE-Av3ZHLcyJVsps0RYRRr_2"
|
54 |
+
elif model_type == "50d":
|
55 |
+
embeddings_id = "1DBaVpJsitQ1qxtUvV1Kz7ThDc3az16kZ"
|
56 |
+
word_index_id = "1rB4ksHyHZ9skes-fJHMa2Z8J1Qa7awQ9"
|
57 |
+
elif model_type == "100d":
|
58 |
+
word_index_id = "1-oWV0LqG3fmrozRZ7WB1jzeTJHRUI3mq"
|
59 |
+
embeddings_id = "1SRHfX130_6Znz7zbdfqboKosz-PfNvNp"
|
60 |
+
|
61 |
+
return word_index_id, embeddings_id
|
62 |
+
|
63 |
+
def download_glove_embeddings_gdrive(model_type):
|
64 |
+
# Get glove embeddings from google drive
|
65 |
+
word_index_id, embeddings_id = get_model_id_gdrive(model_type)
|
66 |
+
|
67 |
+
# Use gdown to get files from google drive
|
68 |
+
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
|
69 |
+
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
70 |
+
|
71 |
+
# Download word_index pickle file
|
72 |
+
print("Downloading word index dictionary....\n")
|
73 |
+
gdown.download(id=word_index_id, output=word_index_temp, quiet=False)
|
74 |
+
|
75 |
+
# Download embeddings numpy file
|
76 |
+
print("Donwloading embedings...\n\n")
|
77 |
+
gdown.download(id=embeddings_id, output=embeddings_temp, quiet=False)
|
78 |
+
|
79 |
+
# @st.cache_data()
|
80 |
+
def load_glove_embeddings_gdrive(model_type):
|
81 |
+
word_index_temp = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
82 |
+
embeddings_temp = "embeddings_" + str(model_type) + "_temp.npy"
|
83 |
+
|
84 |
+
# Load word index dictionary
|
85 |
+
word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")
|
86 |
+
|
87 |
+
# Load embeddings numpy
|
88 |
+
embeddings = np.load(embeddings_temp)
|
89 |
+
|
90 |
+
return word_index_dict, embeddings
|
91 |
+
|
92 |
+
#download_glove_embeddings_gdrive("50d")
|
93 |
+
|
94 |
+
#word_index_dict, embeddings = load_glove_embeddings_gdrive("50d")
|
95 |
+
|
96 |
+
#embeddings.shape
|
97 |
+
|
98 |
+
@st.cache_resource()
|
99 |
+
def load_sentence_transformer_model(model_name):
|
100 |
+
sentenceTransformer = SentenceTransformer(model_name)
|
101 |
+
return sentenceTransformer
|
102 |
+
|
103 |
+
def get_sentence_transformer_embeddings(sentence, model_name="all-MiniLM-L6-v2"):
|
104 |
+
"""
|
105 |
+
Get sentence transformer embeddings for a sentence
|
106 |
+
"""
|
107 |
+
# 384 dimensional embedding
|
108 |
+
# Default model: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
|
109 |
+
|
110 |
+
sentenceTransformer = load_sentence_transformer_model(model_name)
|
111 |
+
|
112 |
+
try:
|
113 |
+
return sentenceTransformer.encode(sentence)
|
114 |
+
except:
|
115 |
+
if model_name == "all-MiniLM-L6-v2":
|
116 |
+
return np.zeros(384)
|
117 |
+
else:
|
118 |
+
return np.zeros(512)
|
119 |
+
|
120 |
+
def get_glove_embeddings(word, word_index_dict, embeddings, model_type):
|
121 |
+
"""
|
122 |
+
Get glove embedding for a single word
|
123 |
+
"""
|
124 |
+
if word.lower() in word_index_dict:
|
125 |
+
return embeddings[word_index_dict[word.lower()]]
|
126 |
+
else:
|
127 |
+
return np.zeros(int(model_type.split("d")[0]))
|
128 |
+
|
129 |
+
def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, model_type=50):
|
130 |
+
"""
|
131 |
+
Get averaged glove embeddings for a sentence
|
132 |
+
1. Split sentence into words
|
133 |
+
2. Get embeddings for each word
|
134 |
+
3. Add embeddings for each word
|
135 |
+
4. Divide by number of words
|
136 |
+
5. Return averaged embeddings
|
137 |
+
(20 pts)
|
138 |
+
"""
|
139 |
+
embedding = np.zeros(int(model_type.split("d")[0]))
|
140 |
+
##################################
|
141 |
+
##### TODO: Add code here ########
|
142 |
+
##################################
|
143 |
+
words = sentence.split()
|
144 |
+
|
145 |
+
# print(word_index_dict)
|
146 |
+
# print(embeddings)
|
147 |
+
|
148 |
+
for word in words:
|
149 |
+
embedding += get_glove_embeddings(word, word_index_dict, embeddings, model_type)
|
150 |
+
|
151 |
+
return embedding / max(len(words), 1.)
|
152 |
+
|
153 |
+
def get_category_embeddings(embeddings_metadata):
|
154 |
+
"""
|
155 |
+
Get embeddings for each category
|
156 |
+
1. Split categories into words
|
157 |
+
2. Get embeddings for each word
|
158 |
+
"""
|
159 |
+
model_name = embeddings_metadata["model_name"]
|
160 |
+
st.session_state["cat_embed_" + model_name] = {}
|
161 |
+
for category in st.session_state.categories.split(" "):
|
162 |
+
if model_name:
|
163 |
+
if not category in st.session_state["cat_embed_" + model_name]:
|
164 |
+
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category, model_name=model_name)
|
165 |
+
else:
|
166 |
+
if not category in st.session_state["cat_embed_" + model_name]:
|
167 |
+
st.session_state["cat_embed_" + model_name][category] = get_sentence_transformer_embeddings(category)
|
168 |
+
|
169 |
+
def update_category_embeddings(embedings_metadata):
|
170 |
+
"""
|
171 |
+
Update embeddings for each category
|
172 |
+
"""
|
173 |
+
get_category_embeddings(embeddings_metadata)
|
174 |
+
|
175 |
+
def sorting_similarity(categories, input_embedding, categories_embeddings):
|
176 |
+
cosine_sim = {}
|
177 |
+
|
178 |
+
similarity_matrix = cosine_similarity(input_embedding, categories_embeddings)
|
179 |
+
|
180 |
+
ranking_indices = np.argsort(-similarity_matrix, axis=1)
|
181 |
+
|
182 |
+
|
183 |
+
sorted_indices = ranking_indices[0]
|
184 |
+
categories_sorting = np.array(categories)[list(sorted_indices)]
|
185 |
+
ranked_similarity_matrix = np.take_along_axis(similarity_matrix, ranking_indices, axis=1)
|
186 |
+
|
187 |
+
#for cat, score in zip(categories_sorting, ranked_similarity_matrix):
|
188 |
+
#cosine_sim[cat] = score
|
189 |
+
|
190 |
+
return tuple(zip(categories_sorting, ranked_similarity_matrix))
|
191 |
+
|
192 |
+
def get_sorted_cosine_similarity(sentence, embeddings_metadata):
|
193 |
+
"""
|
194 |
+
Get sorted cosine similarity between input sentence and categories
|
195 |
+
Steps:
|
196 |
+
1. Get embeddings for input sentence
|
197 |
+
2. Get embeddings for categories (if not found, update category embeddings)
|
198 |
+
3. Compute cosine similarity between input sentence and categories
|
199 |
+
4. Sort cosine similarity
|
200 |
+
5. Return sorted cosine similarity
|
201 |
+
(50 pts)
|
202 |
+
"""
|
203 |
+
categories = st.session_state.categories.split(" ")
|
204 |
+
cosine_sim = {}
|
205 |
+
if embeddings_metadata["embedding_model"] == "glove":
|
206 |
+
word_index_dict = embeddings_metadata["word_index_dict"]
|
207 |
+
embeddings = embeddings_metadata["embeddings"]
|
208 |
+
model_type = embeddings_metadata["model_type"]
|
209 |
+
|
210 |
+
input_embedding = averaged_glove_embeddings_gdrive(st.session_state.text_search,
|
211 |
+
word_index_dict,
|
212 |
+
embeddings, model_type)
|
213 |
+
|
214 |
+
##########################################
|
215 |
+
## TODO: Get embeddings for categories ###
|
216 |
+
##########################################
|
217 |
+
categories_embeddings = []
|
218 |
+
for index in range(len(categories)):
|
219 |
+
cat = categories[index]
|
220 |
+
cat_embedding = get_glove_embeddings(cat,
|
221 |
+
word_index_dict,
|
222 |
+
embeddings,
|
223 |
+
model_type)
|
224 |
+
|
225 |
+
cosine_score = cosine_similarity(input_embedding, cat_embedding)
|
226 |
+
cosine_sim[index] = cosine_score[0][0]
|
227 |
+
|
228 |
+
else:
|
229 |
+
model_name = embeddings_metadata["model_name"]
|
230 |
+
if not "cat_embed_" + model_name in st.session_state:
|
231 |
+
get_category_embeddings(embeddings_metadata)
|
232 |
+
|
233 |
+
category_embeddings = st.session_state["cat_embed_" + model_name]
|
234 |
+
|
235 |
+
print("text_search = ", st.session_state.text_search)
|
236 |
+
if model_name:
|
237 |
+
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search, model_name=model_name)
|
238 |
+
else:
|
239 |
+
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search)
|
240 |
+
for index in range(len(categories)):
|
241 |
+
##########################################
|
242 |
+
# TODO: Compute cosine similarity between input sentence and categories
|
243 |
+
# TODO: Update category embeddings if category not found
|
244 |
+
##########################################
|
245 |
+
cat = categories[index]
|
246 |
+
|
247 |
+
if not cat in category_embeddings:
|
248 |
+
update_category_embeddings(embeddings_metadata)
|
249 |
+
|
250 |
+
cosine_score = cosine_similarity(input_embedding, category_embeddings[cat])
|
251 |
+
cosine_sim[index] = cosine_score[0][0]
|
252 |
+
|
253 |
+
cosine_sim = sorted(cosine_sim.items(), key=lambda x:x[1], reverse=True)
|
254 |
+
|
255 |
+
print(type(cosine_sim))
|
256 |
+
|
257 |
+
return list(cosine_sim)
|
258 |
+
|
259 |
+
def plot_piechart(sorted_cosine_scores_items):
|
260 |
+
sorted_cosine_scores = np.array([
|
261 |
+
sorted_cosine_scores_items[index][1]
|
262 |
+
for index in range(len(sorted_cosine_scores_items))
|
263 |
+
]
|
264 |
+
)
|
265 |
+
categories = st.session_state.categories.split(" ")
|
266 |
+
categories_sorted = [
|
267 |
+
categories[sorted_cosine_scores_items[index][0]]
|
268 |
+
for index in range(len(sorted_cosine_scores_items))
|
269 |
+
]
|
270 |
+
fig, ax = plt.subplots()
|
271 |
+
ax.pie(sorted_cosine_scores, labels=categories_sorted, autopct="%1.1f%%")
|
272 |
+
st.pyplot(fig) # Figure
|
273 |
+
|
274 |
+
def plot_piechart_helper(sorted_cosine_scores_items):
|
275 |
+
sorted_cosine_scores = np.array(
|
276 |
+
[
|
277 |
+
sorted_cosine_scores_items[index][1]
|
278 |
+
for index in range(len(sorted_cosine_scores_items))
|
279 |
+
]
|
280 |
+
)
|
281 |
+
categories = st.session_state.categories.split(" ")
|
282 |
+
categories_sorted = [
|
283 |
+
categories[sorted_cosine_scores_items[index][0]]
|
284 |
+
for index in range(len(sorted_cosine_scores_items))
|
285 |
+
]
|
286 |
+
fig, ax = plt.subplots(figsize=(3, 3))
|
287 |
+
my_explode = np.zeros(len(categories_sorted))
|
288 |
+
my_explode[0] = 0.2
|
289 |
+
if len(categories_sorted) == 3:
|
290 |
+
my_explode[1] = 0.1 # explode this by 0.2
|
291 |
+
elif len(categories_sorted) > 3:
|
292 |
+
my_explode[2] = 0.05
|
293 |
+
ax.pie(
|
294 |
+
sorted_cosine_scores,
|
295 |
+
labels=categories_sorted,
|
296 |
+
autopct="%1.1f%%",
|
297 |
+
explode=my_explode,
|
298 |
+
)
|
299 |
+
|
300 |
+
return fig
|
301 |
+
|
302 |
+
def plot_piecharts(sorted_cosine_scores_models):
|
303 |
+
scores_list = []
|
304 |
+
categories = st.session_state.categories.split(" ")
|
305 |
+
index = 0
|
306 |
+
for model in sorted_cosine_scores_models:
|
307 |
+
scores_list.append(sorted_cosine_scores_models[model])
|
308 |
+
# scores_list[index] = np.array([scores_list[index][ind2][1] for ind2 in range(len(scores_list[index]))])
|
309 |
+
index += 1
|
310 |
+
|
311 |
+
if len(sorted_cosine_scores_models) == 2:
|
312 |
+
fig, (ax1, ax2) = plt.subplots(2)
|
313 |
+
|
314 |
+
categories_sorted = [
|
315 |
+
categories[scores_list[0][index][0]] for index in range(len(scores_list[0]))
|
316 |
+
]
|
317 |
+
sorted_scores = np.array(
|
318 |
+
[scores_list[0][index][1] for index in range(len(scores_list[0]))]
|
319 |
+
)
|
320 |
+
ax1.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
321 |
+
|
322 |
+
categories_sorted = [
|
323 |
+
categories[scores_list[1][index][0]] for index in range(len(scores_list[1]))
|
324 |
+
]
|
325 |
+
sorted_scores = np.array(
|
326 |
+
[scores_list[1][index][1] for index in range(len(scores_list[1]))]
|
327 |
+
)
|
328 |
+
ax2.pie(sorted_scores, labels=categories_sorted, autopct="%1.1f%%")
|
329 |
+
|
330 |
+
st.pyplot(fig)
|
331 |
+
|
332 |
+
def plot_alatirchart(sorted_cosine_scores_models):
|
333 |
+
models = list(sorted_cosine_scores_models.keys())
|
334 |
+
tabs = st.tabs(models)
|
335 |
+
figs = {}
|
336 |
+
for model in models:
|
337 |
+
figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])
|
338 |
+
|
339 |
+
for index in range(len(tabs)):
|
340 |
+
with tabs[index]:
|
341 |
+
st.pyplot(figs[models[index]])
|
342 |
+
|
343 |
+
### Text Search ###
|
344 |
+
st.sidebar.title("GloVe Twitter")
|
345 |
+
st.sidebar.markdown(
|
346 |
+
"""
|
347 |
+
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
|
348 |
+
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).
|
349 |
+
|
350 |
+
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
|
351 |
+
"""
|
352 |
+
)
|
353 |
+
|
354 |
+
model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1)
|
355 |
+
|
356 |
+
|
357 |
+
st.title("Search Based Retrieval Demo")
|
358 |
+
st.subheader(
|
359 |
+
"Pass in space separated categories you want this search demo to be about."
|
360 |
+
)
|
361 |
+
# st.selectbox(label="Pick the categories you want this search demo to be about...",
|
362 |
+
# options=("Flowers Colors Cars Weather Food", "Chocolate Milk", "Anger Joy Sad Frustration Worry Happiness", "Positive Negative"),
|
363 |
+
# key="categories"
|
364 |
+
# )
|
365 |
+
st.text_input(
|
366 |
+
label="Categories", key="categories", value="Flowers Colors Cars Weather Food"
|
367 |
+
)
|
368 |
+
print(st.session_state["categories"])
|
369 |
+
print(type(st.session_state["categories"]))
|
370 |
+
# print("Categories = ", categories)
|
371 |
+
# st.session_state.categories = categories
|
372 |
+
|
373 |
+
st.subheader("Pass in an input word or even a sentence")
|
374 |
+
text_search = st.text_input(
|
375 |
+
label="Input your sentence",
|
376 |
+
key="text_search",
|
377 |
+
value="Roses are red, trucks are blue, and Seattle is grey right now",
|
378 |
+
)
|
379 |
+
# st.session_state.text_search = text_search
|
380 |
+
|
381 |
+
# Download glove embeddings if it doesn't exist
|
382 |
+
embeddings_path = "embeddings_" + str(model_type) + "_temp.npy"
|
383 |
+
word_index_dict_path = "word_index_dict_" + str(model_type) + "_temp.pkl"
|
384 |
+
if not os.path.isfile(embeddings_path) or not os.path.isfile(word_index_dict_path):
|
385 |
+
print("Model type = ", model_type)
|
386 |
+
glove_path = "Data/glove_" + str(model_type) + ".pkl"
|
387 |
+
print("glove_path = ", glove_path)
|
388 |
+
|
389 |
+
# Download embeddings from google drive
|
390 |
+
with st.spinner("Downloading glove embeddings..."):
|
391 |
+
download_glove_embeddings_gdrive(model_type)
|
392 |
+
|
393 |
+
|
394 |
+
# Load glove embeddings
|
395 |
+
word_index_dict, embeddings = load_glove_embeddings_gdrive(model_type)
|
396 |
+
|
397 |
+
|
398 |
+
# Find closest word to an input word
|
399 |
+
if st.session_state.text_search:
|
400 |
+
# Glove embeddings
|
401 |
+
print("Glove Embedding")
|
402 |
+
embeddings_metadata = {
|
403 |
+
"embedding_model": "glove",
|
404 |
+
"word_index_dict": word_index_dict,
|
405 |
+
"embeddings": embeddings,
|
406 |
+
"model_type": model_type,
|
407 |
+
}
|
408 |
+
with st.spinner("Obtaining Cosine similarity for Glove..."):
|
409 |
+
sorted_cosine_sim_glove = get_sorted_cosine_similarity(
|
410 |
+
st.session_state.text_search, embeddings_metadata
|
411 |
+
)
|
412 |
+
|
413 |
+
# Sentence transformer embeddings
|
414 |
+
print("Sentence Transformer Embedding")
|
415 |
+
embeddings_metadata = {"embedding_model": "transformers", "model_name": ""}
|
416 |
+
with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
|
417 |
+
sorted_cosine_sim_transformer = get_sorted_cosine_similarity(
|
418 |
+
st.session_state.text_search, embeddings_metadata
|
419 |
+
)
|
420 |
+
|
421 |
+
# Results and Plot Pie Chart for Glove
|
422 |
+
print("Categories are: ", st.session_state.categories)
|
423 |
+
st.subheader(
|
424 |
+
"Closest word I have between: "
|
425 |
+
+ st.session_state.categories
|
426 |
+
+ " as per different Embeddings"
|
427 |
+
)
|
428 |
+
|
429 |
+
print(sorted_cosine_sim_glove)
|
430 |
+
print(sorted_cosine_sim_transformer)
|
431 |
+
# print(sorted_distilbert)
|
432 |
+
# Altair Chart for all models
|
433 |
+
plot_alatirchart(
|
434 |
+
{
|
435 |
+
"glove_" + str(model_type): sorted_cosine_sim_glove,
|
436 |
+
"sentence_transformer_384": sorted_cosine_sim_transformer,
|
437 |
+
}
|
438 |
+
)
|
439 |
+
# "distilbert_512": sorted_distilbert})
|
440 |
+
|
441 |
+
st.write("")
|
442 |
+
st.write(
|
443 |
+
"Demo developed by [Dr. Karthik Mohan](https://www.linkedin.com/in/karthik-mohan-72a4b323/)"
|
444 |
+
)
|