|
from torch.nn import ( |
|
Linear, |
|
Conv2d, |
|
BatchNorm1d, |
|
BatchNorm2d, |
|
PReLU, |
|
ReLU, |
|
Sigmoid, |
|
Dropout, |
|
MaxPool2d, |
|
AdaptiveAvgPool2d, |
|
Sequential, |
|
Module, |
|
Parameter, |
|
) |
|
import torch |
|
from collections import namedtuple |
|
import math |
|
|
|
|
|
|
|
|
|
class Flatten(Module): |
|
def forward(self, input): |
|
return input.view(input.size(0), -1) |
|
|
|
|
|
def l2_norm(input, axis=1): |
|
norm = torch.norm(input, 2, axis, True) |
|
output = torch.div(input, norm) |
|
return output |
|
|
|
|
|
class SEModule(Module): |
|
def __init__(self, channels, reduction): |
|
super(SEModule, self).__init__() |
|
self.avg_pool = AdaptiveAvgPool2d(1) |
|
self.fc1 = Conv2d( |
|
channels, channels // reduction, kernel_size=1, padding=0, bias=False |
|
) |
|
self.relu = ReLU(inplace=True) |
|
self.fc2 = Conv2d( |
|
channels // reduction, channels, kernel_size=1, padding=0, bias=False |
|
) |
|
self.sigmoid = Sigmoid() |
|
|
|
def forward(self, x): |
|
module_input = x |
|
x = self.avg_pool(x) |
|
x = self.fc1(x) |
|
x = self.relu(x) |
|
x = self.fc2(x) |
|
x = self.sigmoid(x) |
|
return module_input * x |
|
|
|
|
|
class bottleneck_IR(Module): |
|
def __init__(self, in_channel, depth, stride): |
|
super(bottleneck_IR, self).__init__() |
|
if in_channel == depth: |
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
else: |
|
self.shortcut_layer = Sequential( |
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), |
|
BatchNorm2d(depth), |
|
) |
|
self.res_layer = Sequential( |
|
BatchNorm2d(in_channel), |
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), |
|
PReLU(depth), |
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), |
|
BatchNorm2d(depth), |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut_layer(x) |
|
res = self.res_layer(x) |
|
return res + shortcut |
|
|
|
|
|
class bottleneck_IR_SE(Module): |
|
def __init__(self, in_channel, depth, stride): |
|
super(bottleneck_IR_SE, self).__init__() |
|
if in_channel == depth: |
|
self.shortcut_layer = MaxPool2d(1, stride) |
|
else: |
|
self.shortcut_layer = Sequential( |
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False), |
|
BatchNorm2d(depth), |
|
) |
|
self.res_layer = Sequential( |
|
BatchNorm2d(in_channel), |
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), |
|
PReLU(depth), |
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), |
|
BatchNorm2d(depth), |
|
SEModule(depth, 16), |
|
) |
|
|
|
def forward(self, x): |
|
shortcut = self.shortcut_layer(x) |
|
res = self.res_layer(x) |
|
return res + shortcut |
|
|
|
|
|
class Bottleneck(namedtuple("Block", ["in_channel", "depth", "stride"])): |
|
"""A named tuple describing a ResNet block.""" |
|
|
|
|
|
def get_block(in_channel, depth, num_units, stride=2): |
|
return [Bottleneck(in_channel, depth, stride)] + [ |
|
Bottleneck(depth, depth, 1) for i in range(num_units - 1) |
|
] |
|
|
|
|
|
def get_blocks(num_layers): |
|
if num_layers == 50: |
|
blocks = [ |
|
get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=4), |
|
get_block(in_channel=128, depth=256, num_units=14), |
|
get_block(in_channel=256, depth=512, num_units=3), |
|
] |
|
elif num_layers == 100: |
|
blocks = [ |
|
get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=13), |
|
get_block(in_channel=128, depth=256, num_units=30), |
|
get_block(in_channel=256, depth=512, num_units=3), |
|
] |
|
elif num_layers == 152: |
|
blocks = [ |
|
get_block(in_channel=64, depth=64, num_units=3), |
|
get_block(in_channel=64, depth=128, num_units=8), |
|
get_block(in_channel=128, depth=256, num_units=36), |
|
get_block(in_channel=256, depth=512, num_units=3), |
|
] |
|
return blocks |
|
|
|
|
|
class Backbone(Module): |
|
def __init__(self, num_layers, drop_ratio, mode="ir"): |
|
super(Backbone, self).__init__() |
|
assert num_layers in [50, 100, 152], "num_layers should be 50,100, or 152" |
|
assert mode in ["ir", "ir_se"], "mode should be ir or ir_se" |
|
blocks = get_blocks(num_layers) |
|
if mode == "ir": |
|
unit_module = bottleneck_IR |
|
elif mode == "ir_se": |
|
unit_module = bottleneck_IR_SE |
|
self.input_layer = Sequential( |
|
Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64) |
|
) |
|
self.output_layer = Sequential( |
|
BatchNorm2d(512), |
|
Dropout(drop_ratio), |
|
Flatten(), |
|
Linear(512 * 7 * 7, 512), |
|
BatchNorm1d(512), |
|
) |
|
modules = [] |
|
for block in blocks: |
|
for bottleneck in block: |
|
modules.append( |
|
unit_module( |
|
bottleneck.in_channel, bottleneck.depth, bottleneck.stride |
|
) |
|
) |
|
self.body = Sequential(*modules) |
|
|
|
def forward(self, x): |
|
x = self.input_layer(x) |
|
x = self.body(x) |
|
x = self.output_layer(x) |
|
return l2_norm(x) |
|
|
|
|
|
|
|
|
|
|
|
class Conv_block(Module): |
|
def __init__( |
|
self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1 |
|
): |
|
super(Conv_block, self).__init__() |
|
self.conv = Conv2d( |
|
in_c, |
|
out_channels=out_c, |
|
kernel_size=kernel, |
|
groups=groups, |
|
stride=stride, |
|
padding=padding, |
|
bias=False, |
|
) |
|
self.bn = BatchNorm2d(out_c) |
|
self.prelu = PReLU(out_c) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
x = self.prelu(x) |
|
return x |
|
|
|
|
|
class Linear_block(Module): |
|
def __init__( |
|
self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1 |
|
): |
|
super(Linear_block, self).__init__() |
|
self.conv = Conv2d( |
|
in_c, |
|
out_channels=out_c, |
|
kernel_size=kernel, |
|
groups=groups, |
|
stride=stride, |
|
padding=padding, |
|
bias=False, |
|
) |
|
self.bn = BatchNorm2d(out_c) |
|
|
|
def forward(self, x): |
|
x = self.conv(x) |
|
x = self.bn(x) |
|
return x |
|
|
|
|
|
class Depth_Wise(Module): |
|
def __init__( |
|
self, |
|
in_c, |
|
out_c, |
|
residual=False, |
|
kernel=(3, 3), |
|
stride=(2, 2), |
|
padding=(1, 1), |
|
groups=1, |
|
): |
|
super(Depth_Wise, self).__init__() |
|
self.conv = Conv_block( |
|
in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1) |
|
) |
|
self.conv_dw = Conv_block( |
|
groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride |
|
) |
|
self.project = Linear_block( |
|
groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1) |
|
) |
|
self.residual = residual |
|
|
|
def forward(self, x): |
|
if self.residual: |
|
short_cut = x |
|
x = self.conv(x) |
|
x = self.conv_dw(x) |
|
x = self.project(x) |
|
if self.residual: |
|
output = short_cut + x |
|
else: |
|
output = x |
|
return output |
|
|
|
|
|
class Residual(Module): |
|
def __init__( |
|
self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1) |
|
): |
|
super(Residual, self).__init__() |
|
modules = [] |
|
for _ in range(num_block): |
|
modules.append( |
|
Depth_Wise( |
|
c, |
|
c, |
|
residual=True, |
|
kernel=kernel, |
|
padding=padding, |
|
stride=stride, |
|
groups=groups, |
|
) |
|
) |
|
self.model = Sequential(*modules) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
class MobileFaceNet(Module): |
|
def __init__(self, embedding_size): |
|
super(MobileFaceNet, self).__init__() |
|
self.conv1 = Conv_block(3, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1)) |
|
self.conv2_dw = Conv_block( |
|
64, 64, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64 |
|
) |
|
self.conv_23 = Depth_Wise( |
|
64, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128 |
|
) |
|
self.conv_3 = Residual( |
|
64, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1) |
|
) |
|
self.conv_34 = Depth_Wise( |
|
64, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256 |
|
) |
|
self.conv_4 = Residual( |
|
128, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1) |
|
) |
|
self.conv_45 = Depth_Wise( |
|
128, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512 |
|
) |
|
self.conv_5 = Residual( |
|
128, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1) |
|
) |
|
self.conv_6_sep = Conv_block( |
|
128, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0) |
|
) |
|
self.conv_6_dw = Linear_block( |
|
512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0) |
|
) |
|
self.conv_6_flatten = Flatten() |
|
self.linear = Linear(512, embedding_size, bias=False) |
|
self.bn = BatchNorm1d(embedding_size) |
|
|
|
def forward(self, x): |
|
out = self.conv1(x) |
|
|
|
out = self.conv2_dw(out) |
|
|
|
out = self.conv_23(out) |
|
|
|
out = self.conv_3(out) |
|
|
|
out = self.conv_34(out) |
|
|
|
out = self.conv_4(out) |
|
|
|
out = self.conv_45(out) |
|
|
|
out = self.conv_5(out) |
|
|
|
out = self.conv_6_sep(out) |
|
|
|
out = self.conv_6_dw(out) |
|
|
|
out = self.conv_6_flatten(out) |
|
|
|
out = self.linear(out) |
|
|
|
out = self.bn(out) |
|
return l2_norm(out) |
|
|
|
|
|
|
|
|
|
|
|
class Arcface(Module): |
|
|
|
def __init__(self, embedding_size=512, classnum=51332, s=64.0, m=0.5): |
|
super(Arcface, self).__init__() |
|
self.classnum = classnum |
|
self.kernel = Parameter(torch.Tensor(embedding_size, classnum)) |
|
|
|
self.kernel.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) |
|
self.m = m |
|
self.s = s |
|
self.cos_m = math.cos(m) |
|
self.sin_m = math.sin(m) |
|
self.mm = self.sin_m * m |
|
self.threshold = math.cos(math.pi - m) |
|
|
|
def forward(self, embbedings, label): |
|
|
|
nB = len(embbedings) |
|
kernel_norm = l2_norm(self.kernel, axis=0) |
|
|
|
cos_theta = torch.mm(embbedings, kernel_norm) |
|
|
|
cos_theta = cos_theta.clamp(-1, 1) |
|
cos_theta_2 = torch.pow(cos_theta, 2) |
|
sin_theta_2 = 1 - cos_theta_2 |
|
sin_theta = torch.sqrt(sin_theta_2) |
|
cos_theta_m = cos_theta * self.cos_m - sin_theta * self.sin_m |
|
|
|
|
|
|
|
cond_v = cos_theta - self.threshold |
|
cond_mask = cond_v <= 0 |
|
keep_val = cos_theta - self.mm |
|
cos_theta_m[cond_mask] = keep_val[cond_mask] |
|
output = ( |
|
cos_theta * 1.0 |
|
) |
|
idx_ = torch.arange(0, nB, dtype=torch.long) |
|
output[idx_, label] = cos_theta_m[idx_, label] |
|
output *= ( |
|
self.s |
|
) |
|
return output |
|
|
|
|
|
|
|
|
|
|
|
class Am_softmax(Module): |
|
|
|
def __init__(self, embedding_size=512, classnum=51332): |
|
super(Am_softmax, self).__init__() |
|
self.classnum = classnum |
|
self.kernel = Parameter(torch.Tensor(embedding_size, classnum)) |
|
|
|
self.kernel.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) |
|
self.m = 0.35 |
|
self.s = 30.0 |
|
|
|
def forward(self, embbedings, label): |
|
kernel_norm = l2_norm(self.kernel, axis=0) |
|
cos_theta = torch.mm(embbedings, kernel_norm) |
|
cos_theta = cos_theta.clamp(-1, 1) |
|
phi = cos_theta - self.m |
|
label = label.view(-1, 1) |
|
index = cos_theta.data * 0.0 |
|
index.scatter_(1, label.data.view(-1, 1), 1) |
|
index = index.byte() |
|
output = cos_theta * 1.0 |
|
output[index] = phi[index] |
|
output *= ( |
|
self.s |
|
) |
|
return output |
|
|