|
import torch.nn as nn |
|
from torch.nn import ( |
|
Linear, |
|
Conv2d, |
|
BatchNorm1d, |
|
BatchNorm2d, |
|
ReLU, |
|
Dropout, |
|
MaxPool2d, |
|
Sequential, |
|
Module, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1): |
|
"""3x3 convolution with padding""" |
|
|
|
return Conv2d( |
|
in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False |
|
) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
|
|
return Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class BasicBlock(Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
self.bn1 = BatchNorm2d(planes) |
|
self.relu = ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
self.bn2 = BatchNorm2d(planes) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class Bottleneck(Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(Bottleneck, self).__init__() |
|
self.conv1 = conv1x1(inplanes, planes) |
|
self.bn1 = BatchNorm2d(planes) |
|
self.conv2 = conv3x3(planes, planes, stride) |
|
self.bn2 = BatchNorm2d(planes) |
|
self.conv3 = conv1x1(planes, planes * self.expansion) |
|
self.bn3 = BatchNorm2d(planes * self.expansion) |
|
self.relu = ReLU(inplace=True) |
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
out = self.relu(out) |
|
|
|
out = self.conv3(out) |
|
out = self.bn3(out) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ResNet(Module): |
|
def __init__(self, input_size, block, layers, zero_init_residual=True): |
|
super(ResNet, self).__init__() |
|
assert input_size[0] in [ |
|
112, |
|
224, |
|
], "input_size should be [112, 112] or [224, 224]" |
|
self.inplanes = 64 |
|
self.conv1 = Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) |
|
self.bn1 = BatchNorm2d(64) |
|
self.relu = ReLU(inplace=True) |
|
self.maxpool = MaxPool2d(kernel_size=3, stride=2, padding=1) |
|
self.layer1 = self._make_layer(block, 64, layers[0]) |
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) |
|
|
|
self.bn_o1 = BatchNorm2d(2048) |
|
self.dropout = Dropout() |
|
if input_size[0] == 112: |
|
self.fc = Linear(2048 * 4 * 4, 512) |
|
else: |
|
self.fc = Linear(2048 * 8 * 8, 512) |
|
self.bn_o2 = BatchNorm1d(512) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, Conv2d): |
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") |
|
elif isinstance(m, BatchNorm2d): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
if zero_init_residual: |
|
for m in self.modules(): |
|
if isinstance(m, Bottleneck): |
|
nn.init.constant_(m.bn3.weight, 0) |
|
elif isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
downsample = None |
|
if stride != 1 or self.inplanes != planes * block.expansion: |
|
downsample = Sequential( |
|
conv1x1(self.inplanes, planes * block.expansion, stride), |
|
BatchNorm2d(planes * block.expansion), |
|
) |
|
|
|
layers = [] |
|
layers.append(block(self.inplanes, planes, stride, downsample)) |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes)) |
|
|
|
return Sequential(*layers) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.relu(x) |
|
x = self.maxpool(x) |
|
|
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
|
|
x = self.bn_o1(x) |
|
x = self.dropout(x) |
|
x = x.view(x.size(0), -1) |
|
x = self.fc(x) |
|
x = self.bn_o2(x) |
|
|
|
return x |
|
|
|
|
|
def ResNet_18(input_size, **kwargs): |
|
"""Constructs a ResNet-50 model.""" |
|
model = ResNet(input_size, Bottleneck, [2, 2, 2, 2], **kwargs) |
|
|
|
return model |
|
|
|
|
|
def ResNet_50(input_size, **kwargs): |
|
"""Constructs a ResNet-50 model.""" |
|
model = ResNet(input_size, Bottleneck, [3, 4, 6, 3], **kwargs) |
|
|
|
return model |
|
|
|
|
|
def ResNet_101(input_size, **kwargs): |
|
"""Constructs a ResNet-101 model.""" |
|
model = ResNet(input_size, Bottleneck, [3, 4, 23, 3], **kwargs) |
|
|
|
return model |
|
|
|
|
|
def ResNet_152(input_size, **kwargs): |
|
"""Constructs a ResNet-152 model.""" |
|
model = ResNet(input_size, Bottleneck, [3, 8, 36, 3], **kwargs) |
|
|
|
return model |
|
|