|
import gradio as gr |
|
import pandas as pd |
|
import requests |
|
import os |
|
import shutil |
|
import json |
|
import pandas as pd |
|
import subprocess |
|
import plotly.express as px |
|
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_radio): |
|
|
|
num_parts = num_parts_dropdown |
|
token_counts_split = token_counts_radio |
|
line_counts_split = line_counts_radio |
|
cyclomatic_complexity_split = cyclomatic_complexity_radio |
|
|
|
|
|
|
|
dataframes = [] |
|
if token_counts_split=="Equal Frequency Partitioning": |
|
token_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv") |
|
dataframes.append(token_counts_df) |
|
|
|
if line_counts_split=="Equal Frequency Partitioning": |
|
line_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv") |
|
dataframes.append(line_counts_df) |
|
|
|
if cyclomatic_complexity_split=="Equal Frequency Partitioning": |
|
cyclomatic_complexity_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv") |
|
dataframes.append(cyclomatic_complexity_df) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if len(dataframes) > 0: |
|
combined_df = dataframes[0] |
|
for df in dataframes[1:]: |
|
combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y')) |
|
combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')] |
|
return combined_df |
|
else: |
|
return pd.DataFrame() |
|
|
|
|
|
|
|
|
|
def execute_specified_python_files(directory_list, file_list): |
|
for directory in directory_list: |
|
for py_file in file_list: |
|
file_path = os.path.join(directory, py_file) |
|
if os.path.isfile(file_path) and py_file.endswith('.py'): |
|
print(f"Executing {file_path}...") |
|
try: |
|
|
|
subprocess.run(['python', file_path], check=True) |
|
print(f"{file_path} executed successfully.") |
|
except subprocess.CalledProcessError as e: |
|
print(f"Error executing {file_path}: {e}") |
|
else: |
|
print(f"File {file_path} does not exist or is not a Python file.") |
|
|
|
|
|
|
|
|
|
def generate_file(file_obj, user_string, user_number,dataset_choice): |
|
tmpdir = 'tmpdir' |
|
|
|
print('临时文件夹地址:{}'.format(tmpdir)) |
|
FilePath = file_obj.name |
|
print('上传文件的地址:{}'.format(file_obj.name)) |
|
|
|
|
|
shutil.copy(file_obj.name, tmpdir) |
|
|
|
|
|
FileName = os.path.basename(file_obj.name) |
|
|
|
print(FilePath) |
|
|
|
|
|
|
|
with open(FilePath, 'r', encoding="utf-8") as file_obj: |
|
|
|
outputPath = os.path.join('F:/Desktop/test', FileName) |
|
data = json.load(file_obj) |
|
print("data:", data) |
|
|
|
|
|
with open(outputPath, 'w', encoding="utf-8") as w: |
|
json.dump(data, w, ensure_ascii=False, indent=4) |
|
|
|
|
|
file_content = json.dumps(data) |
|
url = "http://localhost:6222/submit" |
|
files = {'file': (FileName, file_content, 'application/json')} |
|
payload = { |
|
'user_string': user_string, |
|
'user_number': user_number, |
|
'dataset_choice':dataset_choice |
|
} |
|
|
|
response = requests.post(url, files=files, data=payload) |
|
print(response) |
|
|
|
if response.status_code == 200: |
|
|
|
output_data = response.json() |
|
|
|
|
|
output_file_path = os.path.join('E:/python-testn/pythonProject3/hh_1/evaluate_result', 'new-model.json') |
|
with open(output_file_path, 'w', encoding="utf-8") as f: |
|
json.dump(output_data, f, ensure_ascii=False, indent=4) |
|
|
|
print(f"File saved at: {output_file_path}") |
|
|
|
|
|
directory_list = ['/path/to/directory1', '/path/to/directory2'] |
|
file_list = ['file1.py', 'file2.py', 'file3.py'] |
|
|
|
execute_specified_python_files(directory_list, file_list) |
|
|
|
return {"status": "success", "message": "File received and saved"} |
|
else: |
|
return {"status": "error", "message": response.text} |
|
|
|
|
|
return {"status": "success", "message": response.text} |
|
|
|
def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type): |
|
options = [] |
|
if token_counts: |
|
options.append("Token Counts in Prompt") |
|
if line_counts: |
|
options.append("Line Counts in Prompt") |
|
if cyclomatic_complexity: |
|
options.append("Cyclomatic Complexity") |
|
if problem_type: |
|
options.append("Problem Type") |
|
|
|
return gr.update(choices=options) |
|
|
|
def plot_csv(radio,num): |
|
|
|
|
|
if radio=="Line Counts in Prompt": |
|
radio_choice="line_counts" |
|
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv' |
|
elif radio=="Token Counts in Prompt": |
|
radio_choice="token_counts" |
|
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv' |
|
elif radio=="Cyclomatic Complexity": |
|
radio_choice="CC" |
|
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv' |
|
elif radio=="Problem Type": |
|
radio_choice="problem_type" |
|
file_path = f'E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/cata_result.csv' |
|
print("test!") |
|
|
|
|
|
df = pd.read_csv(file_path) |
|
|
|
df.set_index('Model', inplace=True) |
|
|
|
|
|
df_transposed = df.T |
|
|
|
|
|
fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns, |
|
title='Model Evaluation Results', |
|
labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'}, |
|
color_discrete_sequence=px.colors.qualitative.Plotly) |
|
|
|
|
|
fig.update_traces(hovertemplate='%{y}') |
|
|
|
return fig |
|
|
|
|
|
|
|
|
|
with gr.Blocks() as iface: |
|
gr.HTML(""" |
|
<style> |
|
.title { |
|
text-align: center; |
|
font-size: 3em; |
|
font-weight: bold; |
|
margin-bottom: 0.5em; |
|
} |
|
.subtitle { |
|
text-align: center; |
|
font-size: 2em; |
|
margin-bottom: 1em; |
|
} |
|
</style> |
|
<div class="title">📊 Demo-Leaderboard 📊</div> |
|
""") |
|
|
|
with gr.Tabs() as tabs: |
|
with gr.TabItem("evaluation_result"): |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
with gr.Row(): |
|
with gr.Column(): |
|
dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ") |
|
|
|
with gr.Row(): |
|
custom_css = """ |
|
<style> |
|
.markdown-class { |
|
font-family: 'Helvetica', sans-serif; |
|
font-size: 17px; |
|
font-weight: bold; |
|
color: #333; |
|
} |
|
</style> |
|
""" |
|
|
|
with gr.Column(): |
|
gr.Markdown( |
|
f"{custom_css}<div class='markdown-class'> Choose Classification Perspective </div>") |
|
|
|
token_counts_checkbox = gr.Checkbox(label="Token Counts in Prompt ") |
|
line_counts_checkbox = gr.Checkbox(label="Line Counts in Prompt ") |
|
cyclomatic_complexity_checkbox = gr.Checkbox(label="Cyclomatic Complexity ") |
|
problem_type_checkbox = gr.Checkbox(label="Problem Type ") |
|
|
|
with gr.Column(): |
|
gr.Markdown("<div class='markdown-class'>Choose Subsets </div>") |
|
num_parts_dropdown = gr.Dropdown(choices=[3, 4, 5, 6, 7, 8], label="Number of Subsets") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
token_counts_radio = gr.Radio( |
|
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset", |
|
visible=False) |
|
with gr.Column(): |
|
line_counts_radio = gr.Radio( |
|
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset", |
|
visible=False) |
|
with gr.Column(): |
|
cyclomatic_complexity_radio = gr.Radio( |
|
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Select Dataset", |
|
visible=False) |
|
|
|
token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio), |
|
inputs=token_counts_checkbox, outputs=token_counts_radio) |
|
line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio), |
|
inputs=line_counts_checkbox, outputs=line_counts_radio) |
|
cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio), |
|
inputs=cyclomatic_complexity_checkbox, |
|
outputs=cyclomatic_complexity_radio) |
|
|
|
with gr.Tabs() as inner_tabs: |
|
with gr.TabItem("Leaderboard"): |
|
dataframe_output = gr.Dataframe(elem_id="dataframe") |
|
css_output = gr.HTML() |
|
confirm_button = gr.Button("Confirm ") |
|
confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio, |
|
line_counts_radio, cyclomatic_complexity_radio], |
|
outputs=dataframe_output) |
|
|
|
with gr.TabItem("Line chart"): |
|
select_radio = gr.Radio(choices=[]) |
|
checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox, |
|
problem_type_checkbox] |
|
for checkbox in checkboxes: |
|
checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio) |
|
select_radio.change(fn=plot_csv, inputs=[select_radio, num_parts_dropdown], |
|
outputs=gr.Plot(label="Line Plot ")) |
|
|
|
with gr.TabItem("upload"): |
|
gr.Markdown("Upload a JSON file") |
|
with gr.Row(): |
|
with gr.Column(): |
|
string_input = gr.Textbox(label="Enter the Model Name") |
|
number_input = gr.Number(label="Select the Number of Samples") |
|
dataset_choice = gr.Dropdown(label="Select Dataset", choices=["humaneval", "mbpp"]) |
|
with gr.Column(): |
|
file_input = gr.File(label="Upload Generation Result in JSON file") |
|
upload_button = gr.Button("Confirm and Upload") |
|
|
|
json_output = gr.JSON(label="") |
|
|
|
upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice], |
|
outputs=json_output) |
|
|
|
|
|
|
|
def toggle_radio(checkbox, radio): |
|
return gr.update(visible=checkbox) |
|
|
|
|
|
|
|
css = """ |
|
#scale1 { |
|
border: 1px solid rgba(0, 0, 0, 0.2); /* 使用浅色边框,并带有透明度 */ |
|
padding: 10px; /* 添加内边距 */ |
|
border-radius: 8px; /* 更圆滑的圆角 */ |
|
background-color: #f9f9f9; /* 背景颜色 */ |
|
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); /* 添加阴影效果 */ |
|
} |
|
} |
|
""" |
|
gr.HTML(f"<style>{css}</style>") |
|
|
|
|
|
|
|
|
|
|
|
iface.launch() |