lmy0802's picture
Update app.py
ee077b5 verified
import gradio as gr
import pandas as pd
import requests
import os
import shutil
import json
import pandas as pd
import subprocess
import plotly.express as px
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_checkbox):
# 根据用户选择的参数构建文件路径
num_parts = num_parts_dropdown
# token_counts_split = token_counts_radio
# line_counts_split = line_counts_radio
# cyclomatic_complexity_split = cyclomatic_complexity_radio
# 读取数据
dataframes = []
if dataset_radio == "HumanEval":
if token_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv")
dataframes.append(token_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/token_counts_EI.csv")
dataframes.append(token_counts_df)
if line_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv")
dataframes.append(line_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/line_counts_EI.csv")
dataframes.append(line_counts_df)
if cyclomatic_complexity_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv")
dataframes.append(CC_df)
if token_counts_radio=="Equal Interval Partitioning":
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/CC_EI.csv")
dataframes.append(CC_df)
#以下改为直接从一个划分文件中读取即可
if problem_type_checkbox:
problem_type_df = pd.read_csv("/home/user/app/dividing_into_different_subsets/cata_result.csv")
dataframes.append(problem_type_df)
if dataset_radio == "MBPP":
if token_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/QS/token_counts_QS.csv")
dataframes.append(token_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/EI/token_counts_EI.csv")
dataframes.append(token_counts_df)
if line_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/QS/line_counts_QS.csv")
dataframes.append(line_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/EI/line_counts_EI.csv")
dataframes.append(line_counts_df)
if cyclomatic_complexity_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/QS/CC_QS.csv")
dataframes.append(CC_df)
if token_counts_radio=="Equal Interval Partitioning":
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/EI/CC_EI.csv")
dataframes.append(CC_df)
#以下改为直接从一个划分文件中读取即可
if problem_type_checkbox:
problem_type_df = pd.read_csv("/home/user/app/dividing_into_different_subsets_mbpp/cata_result.csv")
dataframes.append(problem_type_df)
# 如果所有三个radio都有value,将三个文件中的所有行拼接
if len(dataframes) > 0:
combined_df = dataframes[0]
for df in dataframes[1:]:
combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y'))
combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')] # 去除重复的列
return combined_df
else:
return pd.DataFrame()
def execute_specified_python_files(directory_list, file_list):
for directory in directory_list:
for py_file in file_list:
file_path = os.path.join(directory, py_file)
if os.path.isfile(file_path) and py_file.endswith('.py'):
print(f"Executing {file_path}...")
try:
# 使用subprocess执行Python文件
subprocess.run(['python', file_path], check=True)
print(f"{file_path} executed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error executing {file_path}: {e}")
else:
print(f"File {file_path} does not exist or is not a Python file.")
# 定义一个函数来生成 CSS 样式
def generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low):
css = """
#dataframe th {
background-color: #f2f2f2
}
"""
colors = ["#e6f7ff", "#ffeecc", "#e6ffe6", "#ffe6e6"]
categories = [line_counts, token_counts, cyclomatic_complexity]
category_index = 0
column_index = 1
for category in categories:
if category:
if show_high:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
if show_medium:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
if show_low:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
category_index += 1
# 为 Problem Type 相关的三个子列设置固定颜色
if problem_type:
problem_type_color = "#d4f0fc" # 你可以选择任何你喜欢的颜色
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {problem_type_color}; }}\n"
css += f"#dataframe td:nth-child({column_index + 2}) {{ background-color: {problem_type_color}; }}\n"
css += f"#dataframe td:nth-child({column_index + 3}) {{ background-color: {problem_type_color}; }}\n"
# 隐藏 "data" 标识
css += """
.gradio-container .dataframe-container::before {
content: none !important;
}
"""
return css
def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type):
options = []
if token_counts:
options.append("The Number of Tokens in Problem Descriptions")
if line_counts:
options.append("The Number of Lines in Problem Descriptions")
if cyclomatic_complexity:
options.append("The Complexity of Reference Code")
if problem_type:
options.append("Problem Type")
return gr.update(choices=options)
def plot_csv(dataset_radio,radio,num):
print(dataset_radio,radio)
if dataset_radio=="HumanEval":
if radio=="The Number of Tokens in Problem Descriptions":
radio_choice="token_counts"
file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Number of Lines in Problem Descriptions":
radio_choice="line_counts"
file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Complexity of Reference Code":
radio_choice="CC"
file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Problem Type":
radio_choice="problem_type"
file_path = f'/home/user/app/dividing_into_different_subsets/cata_result.csv'
print("test!")
elif dataset_radio=="MBPP":
if radio=="The Number of Tokens in Problem Descriptions":
radio_choice="token_counts"
file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Number of Lines in Problem Descriptions":
radio_choice="line_counts"
file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Complexity of Reference Code":
radio_choice="CC"
file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Problem Type":
radio_choice="problem_type"
file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/cata_result.csv'
print("test!")
# file_path="E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/3/QS/CC_QS.csv"
df = pd.read_csv(file_path)
# 将第一列作为索引
df.set_index('Model', inplace=True)
# 转置数据框,使得模型作为列,横轴作为行
df_transposed = df.T
# 使用plotly绘制折线图
fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns,
title='Model Evaluation Results',
labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'},
color_discrete_sequence=px.colors.qualitative.Plotly)
# 设置悬停效果
fig.update_traces(hovertemplate='%{y}')
return fig
def toggle_radio(checkbox, radio):
return gr.update(visible=checkbox)
def toggle_line_counts_visibility(dataset):
if dataset == "MBPP":
return gr.update(visible=False)
else:
return gr.update(visible=True)
# 创建 Gradio 界面
import gradio as gr
with gr.Blocks() as iface:
gr.HTML("""
<style>
# body {
# max-width: 50%; /* 设置最大宽度为50% */
# margin: 0 auto; /* 将内容居中 */
# }
.title {
text-align: center;
font-size: 3em;
font-weight: bold;
margin-bottom: 0.5em;
}
.subtitle {
text-align: center;
font-size: 2em;
margin-bottom: 1em;
}
</style>
""")
with gr.Tabs() as tabs:
with gr.TabItem("Evaluation Result"):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ")
with gr.Row():
custom_css = """
<style>
.markdown-class {
font-family: 'Helvetica', sans-serif;
font-size: 20px;
font-weight: bold;
color: #333;
}
</style>
"""
with gr.Column():
gr.Markdown(
f"{custom_css}<div class='markdown-class'> Choose Division Perspective </div>")
token_counts_checkbox = gr.Checkbox(label="I-The Number of Tokens in Problem Descriptions")
line_counts_checkbox = gr.Checkbox(label="II-The Number of Lines in Problem Descriptions")
dataset_radio.change(fn=toggle_line_counts_visibility, inputs=dataset_radio,
outputs=line_counts_checkbox)
cyclomatic_complexity_checkbox = gr.Checkbox(label="III-The Complexity of Reference Code")
problem_type_checkbox = gr.Checkbox(label="IV-Problem Types ")
css_code = """
.dropdown-container {
display: none;
}
"""
with gr.Column():
# gr.Markdown("<div class='markdown-class'>Choose Subsets </div>")
num_parts_dropdown = gr.Dropdown(choices=[0,3, 4, 5, 6, 7, 8], label="Choose the Number of Subsets",value="")
with gr.Row():
with gr.Column():
token_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"],
label="Choose the Division Method for Perspective-I",
visible=False)
with gr.Column():
line_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"],
label="Choose the Division Method for Perspective-II",
visible=False)
with gr.Column():
cyclomatic_complexity_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"],
label="Choose the Division Method for Perspective-III",
visible=False)
token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio),
inputs=token_counts_checkbox, outputs=token_counts_radio)
line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio),
inputs=line_counts_checkbox, outputs=line_counts_radio)
cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio),
inputs=cyclomatic_complexity_checkbox,
outputs=cyclomatic_complexity_radio)
with gr.Tabs() as inner_tabs:
with gr.TabItem("Ranking Table"):
dataframe_output = gr.Dataframe(elem_id="dataframe")
css_output = gr.HTML()
confirm_button = gr.Button("Confirm ")
confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio,
line_counts_radio, cyclomatic_complexity_radio,
problem_type_checkbox],
outputs=dataframe_output)
with gr.TabItem("Line chart"):
select_radio = gr.Radio(choices=[], label="Select One Perpective")
checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox,
problem_type_checkbox]
for checkbox in checkboxes:
checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio)
select_radio.change(fn=plot_csv, inputs=[dataset_radio, select_radio, num_parts_dropdown],
outputs=gr.Plot(label="Line Plot "))
# with gr.TabItem("Upload Inference File"):
# gr.Markdown("Upload a JSON file")
# with gr.Row():
# with gr.Column():
# string_input = gr.Textbox(label="Enter the Model Name")
# number_input = gr.Number(label="Select the Number of Samples")
# dataset_choice = gr.Dropdown(label="Select Dataset", choices=["HumanEval", "MBPP"])
# with gr.Column():
# file_input = gr.File(label="Upload Generation Result in JSON file")
# upload_button = gr.Button("Confirm and Upload")
# json_output = gr.JSON(label="")
# upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice],
# outputs=json_output)
css = """
#scale1 {
border: 1px solid rgba(0, 0, 0, 0.2);
padding: 10px;
border-radius: 8px;
background-color: #f9f9f9;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
}
"""
gr.HTML(f"<style>{css}</style>")
# 初始化数据表格
# initial_df = show_data(False, False, False, False, False, False, False)
# initial_css = generate_css(False, False, False, False, True, False, False)
# dataframe_output.value = initial_df
# css_output.value = f"<style>{initial_css}</style>"
# 启动界面
iface.launch()