gradioSCB / app1.py
llmdi's picture
Upload 17 files
191a7c1
from flask import Flask, request, jsonify, render_template
from flask_cors import CORS
import openai
from langchain.chains.summarize import load_summarize_chain
import os
import json
from pprint import pprint
import pinecone
import time
from langchain.chat_models import AzureChatOpenAI
from langchain.vectorstores import Pinecone
from langchain.chains import RetrievalQA, LLMChain
from langchain.memory import ConversationBufferWindowMemory
from typing import Optional
import pandas as pd
from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import PromptTemplate
from Utility_New import MasterLLM, intent_recognition, entity_recognition_main, describe, compare, RAG, sentiment
openai.api_type = "azure"
openai.api_base = "https://di-sandbox-gpt4.openai.azure.com/"
openai.api_version = "2023-07-01-preview"
openai.api_key = "69ec3919a7314784be9c4f7414286fba"
os.environ['OPENAI_API_KEY']=openai.api_key
os.environ['OPENAI_API_BASE'] = openai.api_base
os.environ['OPENAI_API_VERSION'] = openai.api_version
os.environ['OPENAI_API_TYPE'] = openai.api_type
# PINECONE_API_KEY = 'eb57d1d5-dc39-46c2-a270-e6489dd85df1'
PINECONE_API_KEY = '98bbd113-f65a-403b-b44f-507e60506d46'
# get API key from app.pinecone.io and environment from console
pinecone.init(
api_key=os.environ.get('PINECONE_API_KEY') or '98bbd113-f65a-403b-b44f-507e60506d46',
environment=os.environ.get('PINECONE_ENVIRONMENT') or 'gcp-starter'
)
# # pinecone.init(
# # api_key=os.environ.get('PINECONE_API_KEY') or '49e9d57f-ca7b-45d8-9fe5-b02db54b2dc7',
# # environment=os.environ.get('PINECONE_ENVIRONMENT') or 'gcp-starter'
# # )
# pinecone.init(
# api_key=os.environ.get('PINECONE_API_KEY') or 'eb57d1d5-dc39-46c2-a270-e6489dd85df1',
# environment=os.environ.get('PINECONE_ENVIRONMENT') or 'gcp-starter'
# )
index_name = 'rag-sbc'
embedding_model = OpenAIEmbeddings(openai_api_key = os.environ.get('OPENAI_API_KEY'),
deployment="text-embedding-ada-002",
model="text-embedding-ada-002",
openai_api_base=os.environ.get('OPENAI_API_BASE'),
openai_api_type=os.environ.get('OPENAI_API_TYPE'))
index = pinecone.Index(index_name)
vectorstore = Pinecone(index, embedding_model.embed_query, 'text')
llm = AzureChatOpenAI(deployment_name = "GPT4_32k", model_name = "gpt-4-32k", temperature=0)
llm_35 = AzureChatOpenAI(deployment_name = "GPT_35_16k", model_name = "gpt-35-turbo-16k", temperature=0)
conversational_memory = ConversationBufferWindowMemory(
memory_key='chat_history',
k=5,
return_messages=True)
session_memory = {}
entities = {}
data_json = pd.read_csv('Combined_data_final_V2.csv')
data = pd.read_csv('Combined_data_SBC.csv')
data.drop(columns=['ID'],inplace=True)
result = {}
for main_key, group_df in data.groupby('License Name'):
group_dict = group_df.to_dict(orient='records')
result[main_key] = group_dict
json_result = json.dumps(result, indent=2)
json_result = json_result.replace("\\n","")
json_result = json_result.replace("\\u2002","")
json_result = json_result.replace("\n","")
json_result = json_result.replace("/","")
data = data.applymap(lambda x: x.strip() if isinstance(x, str) else x)
LicenseName = data['License Name'].to_list()
License_Service = data.groupby('License Name')['Service Name'].apply(list).reset_index(name='Service Name')
def final_output(UserPrompt):
# print("Entering 'final_output() thanks!'")
final_json = {}
intent = intent_recognition(UserPrompt)
# if intent!='Compare':
# intent = "Others"
print('Intent')
print(intent)
print()
#intent = "Others"
oldPrompt = UserPrompt
if len(list(entities.keys())) == 0:
PrevEntity = []
else:
PrevEntity = entities[list(entities.keys())[-1]]
Prev_Entity = [i.strip() for i in PrevEntity]
Prev_Entity = list(set(Prev_Entity))
print('Prev_Entity')
print(Prev_Entity)
print()
UserPrompt, Prev_Entity = sentiment(UserPrompt, Prev_Entity)
print('New Prev Entity')
print(Prev_Entity)
print('UserPrompt')
print(UserPrompt)
print()
entity_main = entity_recognition_main(UserPrompt, LicenseName)
entity_main = list(set(entity_main))
print('Main Entity')
print(entity_main)
print()
entities[oldPrompt] = entity_main
for i in Prev_Entity:
entity_main.append(i)
entity = entity_main
entity = list(set(entity))
print('Full Entity')
print(entity)
print()
try:
json_data = json.loads(json_result)
filtered_data = {key: json_data[key] for key in entity}
filtered_json = json.dumps(filtered_data, indent=2)
final_json = json.loads(filtered_json)
except:
final_json = {}
c = 0
if intent in ['Transfer']:
print(intent)
print()
output = "I have shared our last conversation on your WhatsApp"
return output, intent
elif len(entity)>0:
for i in entity:
if i in LicenseName:
c+=1
if c > 0 and c == len(entity):
if intent in ['Describe'] and len(entity) > 0:
print('Describe')
prompt, prompt_template = describe(entity, final_json, UserPrompt)
if len(entity) <=3:
chain = LLMChain(llm=llm_35, prompt=prompt_template,memory = conversational_memory)
else:
chain = LLMChain(llm=llm, prompt=prompt_template,memory = conversational_memory)
output = chain({'context':prompt})['text']
print(output)
elif intent in ['Compare'] and len(entity) > 0:
print('Compare')
prompt,prompt_template = compare(entity, final_json, UserPrompt)
if len(entity) <=3:
chain = LLMChain(llm=llm_35, prompt=prompt_template,memory = conversational_memory)
else:
chain = LLMChain(llm=llm, prompt=prompt_template,memory = conversational_memory)
output = chain({'context':prompt})['text']
print(output)
else:
print("RAG1")
prompt = RAG(UserPrompt,entity)
if len(entity) <=3:
qa = RetrievalQA.from_chain_type(llm=llm_35,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
else:
qa = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
output = qa.run(prompt)
print(output)
else:
print("RAG2")
prompt = RAG(UserPrompt,entity)
if len(entity) <=3:
qa = RetrievalQA.from_chain_type(llm=llm_35,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
else:
qa = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
output = qa.run(prompt)
print(output)
else:
print("RAG1")
prompt = RAG(UserPrompt,entity)
if len(entity) <=3:
qa = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
else:
qa = RetrievalQA.from_chain_type(llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
memory = conversational_memory)
output = qa.run(prompt)
print("I am the output for 'final_output()': ",output)
session_memory[oldPrompt] = output
return output, intent
def final_output_formatted(UserPrompt):
# import pdb; pdb.set_trace()
value = UserPrompt
# print("I am the user input: ", value)
answer,_ = final_output(value)
final_prompt_inst = """Your job is to summarise the given answer. You need to make sure the core values and key points of the answer is retained. You need to judge when you can shorten the answer to few words and when to few lines based on the user question. You need to analyze the answer and strictly add filler words for better conversational experience, bullet points, interactive view for better user experience, new lines and other features
User Prompt for your reference: {UserPrompt}
Answer provided: {answer}
Based on the above instructions, provide the final summarized answer."""
prompt_template_final = PromptTemplate(template = final_prompt_inst,input_variables=['UserPrompt','answer'] )
chain = LLMChain(llm=llm_35, prompt=prompt_template_final)
final_text = chain({'UserPrompt':value,'answer':answer})['text']
# print("I am the final text: ",final_text)
return final_text
app = Flask(__name__)
CORS(app)
@app.route("/")
def get_bot():
return render_template('index.html')
@app.route('/get_bot_response', methods=['POST'])
def get_bot_response():
user_message = request.json['user_message']
print(f'Received user message: {user_message}')
bot_response = final_output_formatted(user_message)
print("hi there")
print(f'Generated bot response: {bot_response}')
return jsonify({'bot_response': bot_response})
if __name__ == '__main__':
app.run(debug=False, host="0.0.0.0", port=8080)