t0-0
Change to prohibit resubmission of failed models
475f876
import json
import os
import pathlib
import huggingface_hub
import requests
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig
from transformers.models.auto.tokenization_auto import AutoTokenizer
from src.display.utils import EvalQueuedModel
def check_model_card(repo_id: str) -> tuple[bool, str]:
"""Checks if the model card and license exist and have been filled"""
try:
card = ModelCard.load(repo_id)
except huggingface_hub.utils.EntryNotFoundError:
return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
# Enforce license metadata
if card.data.license is None:
if not ("license_name" in card.data and "license_link" in card.data):
return False, (
"License not found. Please add a license to your model card using the `license` metadata or a"
" `license_name`/`license_link` pair."
)
# Enforce card content
if len(card.text) < 200:
return False, "Please add a description to your model card, it is too short."
return True, ""
def is_model_on_hub(
model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False
) -> tuple[bool, str]:
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
try:
config = AutoConfig.from_pretrained(
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
)
if test_tokenizer:
try:
AutoTokenizer.from_pretrained(
model_name, revision=revision, trust_remote_code=trust_remote_code, token=token
)
except ValueError as e:
return (False, f"uses a tokenizer which is not in a transformers release: {e}", None)
except Exception:
return (
False,
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
None,
)
return True, None, config
except ValueError:
return (
False,
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
None,
)
except OSError as e:
if "gated repo" in str(e):
slack_webhook_url = os.environ["SLACK_WEBHOOK_URL"]
text = f"<!channel>\n{model_name} is gated model! Please submit this model."
requests.post(slack_webhook_url, data=json.dumps({"text": text}))
return False, "is gated model! Please wait.", None
return False, "was not found on hub!", None
except Exception:
return False, "was not found on hub!", None
def get_model_size(model_info: ModelInfo, precision: str):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
model_size = size_factor * model_size
return model_size
def get_model_arch(model_info: ModelInfo):
"""Gets the model architecture from the configuration"""
return model_info.config.get("architectures", "Unknown")
def already_submitted_models(requested_models_dir: pathlib.Path) -> set[EvalQueuedModel]:
"""Gather a list of already submitted models to avoid duplicates"""
queued_models = set()
for json_path in requested_models_dir.glob("*/*.json"):
with json_path.open() as f:
info = json.load(f)
queued_models.add(
EvalQueuedModel(
model=info["model"],
revision=info["revision"],
precision=info["precision"],
add_special_tokens=info["add_special_tokens"],
llm_jp_eval_version=info["llm_jp_eval_version"],
vllm_version=info["vllm_version"],
)
)
return queued_models