import json import os import pathlib import huggingface_hub import requests from huggingface_hub import ModelCard from huggingface_hub.hf_api import ModelInfo from transformers import AutoConfig from transformers.models.auto.tokenization_auto import AutoTokenizer from src.display.utils import EvalQueuedModel def check_model_card(repo_id: str) -> tuple[bool, str]: """Checks if the model card and license exist and have been filled""" try: card = ModelCard.load(repo_id) except huggingface_hub.utils.EntryNotFoundError: return False, "Please add a model card to your model to explain how you trained/fine-tuned it." # Enforce license metadata if card.data.license is None: if not ("license_name" in card.data and "license_link" in card.data): return False, ( "License not found. Please add a license to your model card using the `license` metadata or a" " `license_name`/`license_link` pair." ) # Enforce card content if len(card.text) < 200: return False, "Please add a description to your model card, it is too short." return True, "" def is_model_on_hub( model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False ) -> tuple[bool, str]: """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses.""" try: config = AutoConfig.from_pretrained( model_name, revision=revision, trust_remote_code=trust_remote_code, token=token ) if test_tokenizer: try: AutoTokenizer.from_pretrained( model_name, revision=revision, trust_remote_code=trust_remote_code, token=token ) except ValueError as e: return (False, f"uses a tokenizer which is not in a transformers release: {e}", None) except Exception: return ( False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None, ) return True, None, config except ValueError: return ( False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", None, ) except OSError as e: if "gated repo" in str(e): slack_webhook_url = os.environ["SLACK_WEBHOOK_URL"] text = f"\n{model_name} is gated model! Please submit this model." requests.post(slack_webhook_url, data=json.dumps({"text": text})) return False, "is gated model! Please wait.", None return False, "was not found on hub!", None except Exception: return False, "was not found on hub!", None def get_model_size(model_info: ModelInfo, precision: str): """Gets the model size from the configuration, or the model name if the configuration does not contain the information.""" try: model_size = round(model_info.safetensors["total"] / 1e9, 3) except (AttributeError, TypeError): return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1 model_size = size_factor * model_size return model_size def get_model_arch(model_info: ModelInfo): """Gets the model architecture from the configuration""" return model_info.config.get("architectures", "Unknown") def already_submitted_models(requested_models_dir: pathlib.Path) -> set[EvalQueuedModel]: """Gather a list of already submitted models to avoid duplicates""" queued_models = set() for json_path in requested_models_dir.glob("*/*.json"): with json_path.open() as f: info = json.load(f) queued_models.add( EvalQueuedModel( model=info["model"], revision=info["revision"], precision=info["precision"], add_special_tokens=info["add_special_tokens"], llm_jp_eval_version=info["llm_jp_eval_version"], vllm_version=info["vllm_version"], ) ) return queued_models