|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .scheduling_utils import SchedulerMixin, SchedulerOutput |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
|
|
def alpha_bar(time_step): |
|
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return np.array(betas, dtype=np.float32) |
|
|
|
|
|
class DDPMScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and |
|
Langevin dynamics sampling. |
|
|
|
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` |
|
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. |
|
[`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and |
|
[`~ConfigMixin.from_config`] functios. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2006.11239 |
|
|
|
Args: |
|
num_train_timesteps (`int`): number of diffusion steps used to train the model. |
|
beta_start (`float`): the starting `beta` value of inference. |
|
beta_end (`float`): the final `beta` value. |
|
beta_schedule (`str`): |
|
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. |
|
trained_betas (`np.ndarray`, optional): TODO |
|
variance_type (`str`): |
|
options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, |
|
`fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. |
|
clip_sample (`bool`, default `True`): |
|
option to clip predicted sample between -1 and 1 for numerical stability. |
|
tensor_format (`str`): whether the scheduler expects pytorch or numpy arrays. |
|
|
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[np.ndarray] = None, |
|
variance_type: str = "fixed_small", |
|
clip_sample: bool = True, |
|
tensor_format: str = "pt", |
|
): |
|
|
|
if trained_betas is not None: |
|
self.betas = np.asarray(trained_betas) |
|
elif beta_schedule == "linear": |
|
self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2 |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = np.cumprod(self.alphas, axis=0) |
|
self.one = np.array(1.0) |
|
|
|
|
|
self.num_inference_steps = None |
|
self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy() |
|
|
|
self.tensor_format = tensor_format |
|
self.set_format(tensor_format=tensor_format) |
|
|
|
self.variance_type = variance_type |
|
|
|
def set_timesteps(self, num_inference_steps: int): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
""" |
|
num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) |
|
self.num_inference_steps = num_inference_steps |
|
self.timesteps = np.arange( |
|
0, self.config.num_train_timesteps, self.config.num_train_timesteps // self.num_inference_steps |
|
)[::-1].copy() |
|
self.set_format(tensor_format=self.tensor_format) |
|
|
|
def _get_variance(self, t, predicted_variance=None, variance_type=None): |
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one |
|
|
|
|
|
|
|
|
|
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t] |
|
|
|
if variance_type is None: |
|
variance_type = self.config.variance_type |
|
|
|
|
|
if variance_type == "fixed_small": |
|
variance = self.clip(variance, min_value=1e-20) |
|
|
|
elif variance_type == "fixed_small_log": |
|
variance = self.log(self.clip(variance, min_value=1e-20)) |
|
elif variance_type == "fixed_large": |
|
variance = self.betas[t] |
|
elif variance_type == "fixed_large_log": |
|
|
|
variance = self.log(self.betas[t]) |
|
elif variance_type == "learned": |
|
return predicted_variance |
|
elif variance_type == "learned_range": |
|
min_log = variance |
|
max_log = self.betas[t] |
|
frac = (predicted_variance + 1) / 2 |
|
variance = frac * max_log + (1 - frac) * min_log |
|
|
|
return variance |
|
|
|
def step( |
|
self, |
|
model_output: Union[torch.FloatTensor, np.ndarray], |
|
timestep: int, |
|
sample: Union[torch.FloatTensor, np.ndarray], |
|
predict_epsilon=True, |
|
generator=None, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. |
|
timestep (`int`): current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor` or `np.ndarray`): |
|
current instance of sample being created by diffusion process. |
|
eta (`float`): weight of noise for added noise in diffusion step. |
|
predict_epsilon (`bool`): |
|
optional flag to use when model predicts the samples directly instead of the noise, epsilon. |
|
generator: random number generator. |
|
return_dict (`bool`): option for returning tuple rather than SchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
t = timestep |
|
|
|
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: |
|
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) |
|
else: |
|
predicted_variance = None |
|
|
|
|
|
alpha_prod_t = self.alphas_cumprod[t] |
|
alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one |
|
beta_prod_t = 1 - alpha_prod_t |
|
beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
|
|
|
|
|
if predict_epsilon: |
|
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
else: |
|
pred_original_sample = model_output |
|
|
|
|
|
if self.config.clip_sample: |
|
pred_original_sample = self.clip(pred_original_sample, -1, 1) |
|
|
|
|
|
|
|
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t |
|
current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t |
|
|
|
|
|
|
|
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample |
|
|
|
|
|
variance = 0 |
|
if t > 0: |
|
noise = self.randn_like(model_output, generator=generator) |
|
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise |
|
|
|
pred_prev_sample = pred_prev_sample + variance |
|
|
|
if not return_dict: |
|
return (pred_prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=pred_prev_sample) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: Union[torch.FloatTensor, np.ndarray], |
|
noise: Union[torch.FloatTensor, np.ndarray], |
|
timesteps: Union[torch.IntTensor, np.ndarray], |
|
) -> Union[torch.FloatTensor, np.ndarray]: |
|
|
|
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 |
|
sqrt_alpha_prod = self.match_shape(sqrt_alpha_prod, original_samples) |
|
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 |
|
sqrt_one_minus_alpha_prod = self.match_shape(sqrt_one_minus_alpha_prod, original_samples) |
|
|
|
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|