cs7150 / diffusers /onnx_utils.py
lakshyana
updated diffusers
7c8c2c8
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from .utils import is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
ONNX_WEIGHTS_NAME = "model.onnx"
logger = logging.get_logger(__name__)
class OnnxRuntimeModel:
base_model_prefix = "onnx_model"
def __init__(self, model=None, **kwargs):
logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future.")
self.model = model
self.model_save_dir = kwargs.get("model_save_dir", None)
self.latest_model_name = kwargs.get("latest_model_name", "model.onnx")
def __call__(self, **kwargs):
inputs = {k: np.array(v) for k, v in kwargs.items()}
return self.model.run(None, inputs)
@staticmethod
def load_model(path: Union[str, Path], provider=None):
"""
Loads an ONNX Inference session with an ExecutionProvider. Default provider is `CPUExecutionProvider`
Arguments:
path (`str` or `Path`):
Directory from which to load
provider(`str`, *optional*):
Onnxruntime execution provider to use for loading the model, defaults to `CPUExecutionProvider`
"""
if provider is None:
logger.info("No onnxruntime provider specified, using CPUExecutionProvider")
provider = "CPUExecutionProvider"
return ort.InferenceSession(path, providers=[provider])
def _save_pretrained(self, save_directory: Union[str, Path], file_name: Optional[str] = None, **kwargs):
"""
Save a model and its configuration file to a directory, so that it can be re-loaded using the
[`~optimum.onnxruntime.modeling_ort.ORTModel.from_pretrained`] class method. It will always save the
latest_model_name.
Arguments:
save_directory (`str` or `Path`):
Directory where to save the model file.
file_name(`str`, *optional*):
Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to save the
model with a different name.
"""
model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME
src_path = self.model_save_dir.joinpath(self.latest_model_name)
dst_path = Path(save_directory).joinpath(model_file_name)
if not src_path.samefile(dst_path):
shutil.copyfile(src_path, dst_path)
def save_pretrained(
self,
save_directory: Union[str, os.PathLike],
**kwargs,
):
"""
Save a model to a directory, so that it can be re-loaded using the [`~OnnxModel.from_pretrained`] class
method.:
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to which to save. Will be created if it doesn't exist.
"""
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
os.makedirs(save_directory, exist_ok=True)
# saving model weights/files
self._save_pretrained(save_directory, **kwargs)
@classmethod
def _from_pretrained(
cls,
model_id: Union[str, Path],
use_auth_token: Optional[Union[bool, str, None]] = None,
revision: Optional[Union[str, None]] = None,
force_download: bool = False,
cache_dir: Optional[str] = None,
file_name: Optional[str] = None,
provider: Optional[str] = None,
**kwargs,
):
"""
Load a model from a directory or the HF Hub.
Arguments:
model_id (`str` or `Path`):
Directory from which to load
use_auth_token (`str` or `bool`):
Is needed to load models from a private or gated repository
revision (`str`):
Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id
cache_dir (`Union[str, Path]`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
file_name(`str`):
Overwrites the default model file name from `"model.onnx"` to `file_name`. This allows you to load
different model files from the same repository or directory.
provider(`str`):
The ONNX runtime provider, e.g. `CPUExecutionProvider` or `CUDAExecutionProvider`.
kwargs (`Dict`, *optional*):
kwargs will be passed to the model during initialization
"""
model_file_name = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(model_id):
model = OnnxRuntimeModel.load_model(os.path.join(model_id, model_file_name), provider=provider)
kwargs["model_save_dir"] = Path(model_id)
# load model from hub
else:
# download model
model_cache_path = hf_hub_download(
repo_id=model_id,
filename=model_file_name,
use_auth_token=use_auth_token,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
)
kwargs["model_save_dir"] = Path(model_cache_path).parent
kwargs["latest_model_name"] = Path(model_cache_path).name
model = OnnxRuntimeModel.load_model(model_cache_path, provider=provider)
return cls(model=model, **kwargs)
@classmethod
def from_pretrained(
cls,
model_id: Union[str, Path],
force_download: bool = True,
use_auth_token: Optional[str] = None,
cache_dir: Optional[str] = None,
**model_kwargs,
):
revision = None
if len(str(model_id).split("@")) == 2:
model_id, revision = model_id.split("@")
return cls._from_pretrained(
model_id=model_id,
revision=revision,
cache_dir=cache_dir,
force_download=force_download,
use_auth_token=use_auth_token,
**model_kwargs,
)