|
from functools import partial |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class Upsample2D(nn.Module): |
|
""" |
|
An upsampling layer with an optional convolution. |
|
|
|
:param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is |
|
applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
|
|
conv = None |
|
if use_conv_transpose: |
|
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) |
|
elif use_conv: |
|
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) |
|
|
|
|
|
if name == "conv": |
|
self.conv = conv |
|
else: |
|
self.Conv2d_0 = conv |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.use_conv_transpose: |
|
return self.conv(x) |
|
|
|
x = F.interpolate(x, scale_factor=2.0, mode="nearest") |
|
|
|
|
|
if self.use_conv: |
|
if self.name == "conv": |
|
x = self.conv(x) |
|
else: |
|
x = self.Conv2d_0(x) |
|
|
|
return x |
|
|
|
|
|
class Downsample2D(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
|
|
:param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is |
|
applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = 2 |
|
self.name = name |
|
|
|
if use_conv: |
|
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) |
|
else: |
|
assert self.channels == self.out_channels |
|
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) |
|
|
|
|
|
if name == "conv": |
|
self.Conv2d_0 = conv |
|
self.conv = conv |
|
elif name == "Conv2d_0": |
|
self.conv = conv |
|
else: |
|
self.conv = conv |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.use_conv and self.padding == 0: |
|
pad = (0, 1, 0, 1) |
|
x = F.pad(x, pad, mode="constant", value=0) |
|
|
|
assert x.shape[1] == self.channels |
|
x = self.conv(x) |
|
|
|
return x |
|
|
|
|
|
class FirUpsample2D(nn.Module): |
|
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): |
|
super().__init__() |
|
out_channels = out_channels if out_channels else channels |
|
if use_conv: |
|
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.use_conv = use_conv |
|
self.fir_kernel = fir_kernel |
|
self.out_channels = out_channels |
|
|
|
def _upsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1): |
|
"""Fused `upsample_2d()` followed by `Conv2d()`. |
|
|
|
Args: |
|
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more |
|
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary: |
|
order. |
|
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, |
|
C]`. |
|
weight: Weight tensor of the shape `[filterH, filterW, inChannels, |
|
outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. |
|
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` |
|
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. |
|
factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as |
|
`x`. |
|
""" |
|
|
|
assert isinstance(factor, int) and factor >= 1 |
|
|
|
|
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
|
|
kernel = np.asarray(kernel, dtype=np.float32) |
|
if kernel.ndim == 1: |
|
kernel = np.outer(kernel, kernel) |
|
kernel /= np.sum(kernel) |
|
|
|
kernel = kernel * (gain * (factor**2)) |
|
|
|
if self.use_conv: |
|
convH = weight.shape[2] |
|
convW = weight.shape[3] |
|
inC = weight.shape[1] |
|
|
|
p = (kernel.shape[0] - factor) - (convW - 1) |
|
|
|
stride = (factor, factor) |
|
|
|
stride = [1, 1, factor, factor] |
|
output_shape = ((x.shape[2] - 1) * factor + convH, (x.shape[3] - 1) * factor + convW) |
|
output_padding = ( |
|
output_shape[0] - (x.shape[2] - 1) * stride[0] - convH, |
|
output_shape[1] - (x.shape[3] - 1) * stride[1] - convW, |
|
) |
|
assert output_padding[0] >= 0 and output_padding[1] >= 0 |
|
inC = weight.shape[1] |
|
num_groups = x.shape[1] // inC |
|
|
|
|
|
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) |
|
weight = weight[..., ::-1, ::-1].permute(0, 2, 1, 3, 4) |
|
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) |
|
|
|
x = F.conv_transpose2d(x, weight, stride=stride, output_padding=output_padding, padding=0) |
|
|
|
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2 + factor - 1, p // 2 + 1)) |
|
else: |
|
p = kernel.shape[0] - factor |
|
x = upfirdn2d_native( |
|
x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2) |
|
) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
if self.use_conv: |
|
height = self._upsample_2d(x, self.Conv2d_0.weight, kernel=self.fir_kernel) |
|
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) |
|
else: |
|
height = self._upsample_2d(x, kernel=self.fir_kernel, factor=2) |
|
|
|
return height |
|
|
|
|
|
class FirDownsample2D(nn.Module): |
|
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): |
|
super().__init__() |
|
out_channels = out_channels if out_channels else channels |
|
if use_conv: |
|
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.fir_kernel = fir_kernel |
|
self.use_conv = use_conv |
|
self.out_channels = out_channels |
|
|
|
def _downsample_2d(self, x, weight=None, kernel=None, factor=2, gain=1): |
|
"""Fused `Conv2d()` followed by `downsample_2d()`. |
|
|
|
Args: |
|
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more |
|
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary: |
|
order. |
|
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. w: Weight tensor of the shape `[filterH, |
|
filterW, inChannels, outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // |
|
numGroups`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * |
|
factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: |
|
Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same |
|
datatype as `x`. |
|
""" |
|
|
|
assert isinstance(factor, int) and factor >= 1 |
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
|
|
kernel = np.asarray(kernel, dtype=np.float32) |
|
if kernel.ndim == 1: |
|
kernel = np.outer(kernel, kernel) |
|
kernel /= np.sum(kernel) |
|
|
|
kernel = kernel * gain |
|
|
|
if self.use_conv: |
|
_, _, convH, convW = weight.shape |
|
p = (kernel.shape[0] - factor) + (convW - 1) |
|
s = [factor, factor] |
|
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), pad=((p + 1) // 2, p // 2)) |
|
x = F.conv2d(x, weight, stride=s, padding=0) |
|
else: |
|
p = kernel.shape[0] - factor |
|
x = upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) |
|
|
|
return x |
|
|
|
def forward(self, x): |
|
if self.use_conv: |
|
x = self._downsample_2d(x, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) |
|
x = x + self.Conv2d_0.bias.reshape(1, -1, 1, 1) |
|
else: |
|
x = self._downsample_2d(x, kernel=self.fir_kernel, factor=2) |
|
|
|
return x |
|
|
|
|
|
class ResnetBlock2D(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout=0.0, |
|
temb_channels=512, |
|
groups=32, |
|
groups_out=None, |
|
pre_norm=True, |
|
eps=1e-6, |
|
non_linearity="swish", |
|
time_embedding_norm="default", |
|
kernel=None, |
|
output_scale_factor=1.0, |
|
use_nin_shortcut=None, |
|
up=False, |
|
down=False, |
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.time_embedding_norm = time_embedding_norm |
|
self.up = up |
|
self.down = down |
|
self.output_scale_factor = output_scale_factor |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if temb_channels is not None: |
|
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) |
|
else: |
|
self.time_emb_proj = None |
|
|
|
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
self.dropout = torch.nn.Dropout(dropout) |
|
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if non_linearity == "swish": |
|
self.nonlinearity = lambda x: F.silu(x) |
|
elif non_linearity == "mish": |
|
self.nonlinearity = Mish() |
|
elif non_linearity == "silu": |
|
self.nonlinearity = nn.SiLU() |
|
|
|
self.upsample = self.downsample = None |
|
if self.up: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") |
|
else: |
|
self.upsample = Upsample2D(in_channels, use_conv=False) |
|
elif self.down: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) |
|
else: |
|
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") |
|
|
|
self.use_nin_shortcut = self.in_channels != self.out_channels if use_nin_shortcut is None else use_nin_shortcut |
|
|
|
self.conv_shortcut = None |
|
if self.use_nin_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, x, temb): |
|
hidden_states = x |
|
|
|
|
|
|
|
hidden_states = self.norm1(hidden_states.float()).type(hidden_states.dtype) |
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
if self.upsample is not None: |
|
x = self.upsample(x) |
|
hidden_states = self.upsample(hidden_states) |
|
elif self.downsample is not None: |
|
x = self.downsample(x) |
|
hidden_states = self.downsample(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
|
|
if temb is not None: |
|
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] |
|
hidden_states = hidden_states + temb |
|
|
|
|
|
|
|
hidden_states = self.norm2(hidden_states.float()).type(hidden_states.dtype) |
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
x = self.conv_shortcut(x) |
|
|
|
out = (x + hidden_states) / self.output_scale_factor |
|
|
|
return out |
|
|
|
|
|
class Mish(torch.nn.Module): |
|
def forward(self, x): |
|
return x * torch.tanh(torch.nn.functional.softplus(x)) |
|
|
|
|
|
def upsample_2d(x, kernel=None, factor=2, gain=1): |
|
r"""Upsample2D a batch of 2D images with the given filter. |
|
|
|
Args: |
|
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given |
|
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified |
|
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a: |
|
multiple of the upsampling factor. |
|
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, |
|
C]`. |
|
k: FIR filter of the shape `[firH, firW]` or `[firN]` |
|
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. |
|
factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
Tensor of the shape `[N, C, H * factor, W * factor]` |
|
""" |
|
assert isinstance(factor, int) and factor >= 1 |
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
kernel = np.asarray(kernel, dtype=np.float32) |
|
if kernel.ndim == 1: |
|
kernel = np.outer(kernel, kernel) |
|
kernel /= np.sum(kernel) |
|
|
|
kernel = kernel * (gain * (factor**2)) |
|
p = kernel.shape[0] - factor |
|
return upfirdn2d_native( |
|
x, torch.tensor(kernel, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2) |
|
) |
|
|
|
|
|
def downsample_2d(x, kernel=None, factor=2, gain=1): |
|
r"""Downsample2D a batch of 2D images with the given filter. |
|
|
|
Args: |
|
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the |
|
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the |
|
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its |
|
shape is a multiple of the downsampling factor. |
|
x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, |
|
C]`. |
|
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` |
|
(separable). The default is `[1] * factor`, which corresponds to average pooling. |
|
factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). |
|
|
|
Returns: |
|
Tensor of the shape `[N, C, H // factor, W // factor]` |
|
""" |
|
|
|
assert isinstance(factor, int) and factor >= 1 |
|
if kernel is None: |
|
kernel = [1] * factor |
|
|
|
kernel = np.asarray(kernel, dtype=np.float32) |
|
if kernel.ndim == 1: |
|
kernel = np.outer(kernel, kernel) |
|
kernel /= np.sum(kernel) |
|
|
|
kernel = kernel * gain |
|
p = kernel.shape[0] - factor |
|
return upfirdn2d_native(x, torch.tensor(kernel, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) |
|
|
|
|
|
def upfirdn2d_native(input, kernel, up=1, down=1, pad=(0, 0)): |
|
up_x = up_y = up |
|
down_x = down_y = down |
|
pad_x0 = pad_y0 = pad[0] |
|
pad_x1 = pad_y1 = pad[1] |
|
|
|
_, channel, in_h, in_w = input.shape |
|
input = input.reshape(-1, in_h, in_w, 1) |
|
|
|
_, in_h, in_w, minor = input.shape |
|
kernel_h, kernel_w = kernel.shape |
|
|
|
out = input.view(-1, in_h, 1, in_w, 1, minor) |
|
|
|
|
|
if input.device.type == "mps": |
|
out = out.to("cpu") |
|
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) |
|
out = out.view(-1, in_h * up_y, in_w * up_x, minor) |
|
|
|
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) |
|
out = out.to(input.device) |
|
out = out[ |
|
:, |
|
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), |
|
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), |
|
:, |
|
] |
|
|
|
out = out.permute(0, 3, 1, 2) |
|
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) |
|
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) |
|
out = F.conv2d(out, w) |
|
out = out.reshape( |
|
-1, |
|
minor, |
|
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, |
|
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, |
|
) |
|
out = out.permute(0, 2, 3, 1) |
|
out = out[:, ::down_y, ::down_x, :] |
|
|
|
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 |
|
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 |
|
|
|
return out.view(-1, channel, out_h, out_w) |
|
|