cs7150 / diffusers /hub_utils.py
lakshyana
updated diffusers
7c8c2c8
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
from pathlib import Path
from typing import Optional
from huggingface_hub import HfFolder, Repository, whoami
from .pipeline_utils import DiffusionPipeline
from .utils import is_modelcards_available, logging
if is_modelcards_available():
from modelcards import CardData, ModelCard
logger = logging.get_logger(__name__)
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "utils" / "model_card_template.md"
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def init_git_repo(args, at_init: bool = False):
"""
Args:
Initializes a git repo in `args.hub_model_id`.
at_init (`bool`, *optional*, defaults to `False`):
Whether this function is called before any training or not. If `self.args.overwrite_output_dir` is `True`
and `at_init` is `True`, the path to the repo (which is `self.args.output_dir`) might be wiped out.
"""
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
return
hub_token = args.hub_token if hasattr(args, "hub_token") else None
use_auth_token = True if hub_token is None else hub_token
if not hasattr(args, "hub_model_id") or args.hub_model_id is None:
repo_name = Path(args.output_dir).absolute().name
else:
repo_name = args.hub_model_id
if "/" not in repo_name:
repo_name = get_full_repo_name(repo_name, token=hub_token)
try:
repo = Repository(
args.output_dir,
clone_from=repo_name,
use_auth_token=use_auth_token,
private=args.hub_private_repo,
)
except EnvironmentError:
if args.overwrite_output_dir and at_init:
# Try again after wiping output_dir
shutil.rmtree(args.output_dir)
repo = Repository(
args.output_dir,
clone_from=repo_name,
use_auth_token=use_auth_token,
)
else:
raise
repo.git_pull()
# By default, ignore the checkpoint folders
if not os.path.exists(os.path.join(args.output_dir, ".gitignore")):
with open(os.path.join(args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
writer.writelines(["checkpoint-*/"])
return repo
def push_to_hub(
args,
pipeline: DiffusionPipeline,
repo: Repository,
commit_message: Optional[str] = "End of training",
blocking: bool = True,
**kwargs,
) -> str:
"""
Parameters:
Upload *self.model* and *self.tokenizer* to the πŸ€— model hub on the repo *self.args.hub_model_id*.
commit_message (`str`, *optional*, defaults to `"End of training"`):
Message to commit while pushing.
blocking (`bool`, *optional*, defaults to `True`):
Whether the function should return only when the `git push` has finished.
kwargs:
Additional keyword arguments passed along to [`create_model_card`].
Returns:
The url of the commit of your model in the given repository if `blocking=False`, a tuple with the url of the
commit and an object to track the progress of the commit if `blocking=True`
"""
if not hasattr(args, "hub_model_id") or args.hub_model_id is None:
model_name = Path(args.output_dir).name
else:
model_name = args.hub_model_id.split("/")[-1]
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving pipeline checkpoint to {output_dir}")
pipeline.save_pretrained(output_dir)
# Only push from one node.
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
return
# Cancel any async push in progress if blocking=True. The commits will all be pushed together.
if (
blocking
and len(repo.command_queue) > 0
and repo.command_queue[-1] is not None
and not repo.command_queue[-1].is_done
):
repo.command_queue[-1]._process.kill()
git_head_commit_url = repo.push_to_hub(commit_message=commit_message, blocking=blocking, auto_lfs_prune=True)
# push separately the model card to be independent from the rest of the model
create_model_card(args, model_name=model_name)
try:
repo.push_to_hub(commit_message="update model card README.md", blocking=blocking, auto_lfs_prune=True)
except EnvironmentError as exc:
logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")
return git_head_commit_url
def create_model_card(args, model_name):
if not is_modelcards_available:
raise ValueError(
"Please make sure to have `modelcards` installed when using the `create_model_card` function. You can"
" install the package with `pip install modelcards`."
)
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
return
hub_token = args.hub_token if hasattr(args, "hub_token") else None
repo_name = get_full_repo_name(model_name, token=hub_token)
model_card = ModelCard.from_template(
card_data=CardData( # Card metadata object that will be converted to YAML block
language="en",
license="apache-2.0",
library_name="diffusers",
tags=[],
datasets=args.dataset_name,
metrics=[],
),
template_path=MODEL_CARD_TEMPLATE_PATH,
model_name=model_name,
repo_name=repo_name,
dataset_name=args.dataset_name if hasattr(args, "dataset_name") else None,
learning_rate=args.learning_rate,
train_batch_size=args.train_batch_size,
eval_batch_size=args.eval_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps
if hasattr(args, "gradient_accumulation_steps")
else None,
adam_beta1=args.adam_beta1 if hasattr(args, "adam_beta1") else None,
adam_beta2=args.adam_beta2 if hasattr(args, "adam_beta2") else None,
adam_weight_decay=args.adam_weight_decay if hasattr(args, "adam_weight_decay") else None,
adam_epsilon=args.adam_epsilon if hasattr(args, "adam_epsilon") else None,
lr_scheduler=args.lr_scheduler if hasattr(args, "lr_scheduler") else None,
lr_warmup_steps=args.lr_warmup_steps if hasattr(args, "lr_warmup_steps") else None,
ema_inv_gamma=args.ema_inv_gamma if hasattr(args, "ema_inv_gamma") else None,
ema_power=args.ema_power if hasattr(args, "ema_power") else None,
ema_max_decay=args.ema_max_decay if hasattr(args, "ema_max_decay") else None,
mixed_precision=args.mixed_precision,
)
card_path = os.path.join(args.output_dir, "README.md")
model_card.save(card_path)