Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
from typing import Dict, List, Optional, Tuple, Union | |
import cv2 | |
import mmcv | |
import numpy as np | |
import torch | |
from mmengine.dist import master_only | |
from mmengine.structures import InstanceData, PixelData | |
from mmpose.datasets.datasets.utils import parse_pose_metainfo | |
from mmpose.registry import VISUALIZERS | |
from mmpose.structures import PoseDataSample | |
from .opencv_backend_visualizer import OpencvBackendVisualizer | |
from .simcc_vis import SimCCVisualizer | |
def _get_adaptive_scales(areas: np.ndarray, | |
min_area: int = 800, | |
max_area: int = 30000) -> np.ndarray: | |
"""Get adaptive scales according to areas. | |
The scale range is [0.5, 1.0]. When the area is less than | |
``min_area``, the scale is 0.5 while the area is larger than | |
``max_area``, the scale is 1.0. | |
Args: | |
areas (ndarray): The areas of bboxes or masks with the | |
shape of (n, ). | |
min_area (int): Lower bound areas for adaptive scales. | |
Defaults to 800. | |
max_area (int): Upper bound areas for adaptive scales. | |
Defaults to 30000. | |
Returns: | |
ndarray: The adaotive scales with the shape of (n, ). | |
""" | |
scales = 0.5 + (areas - min_area) / (max_area - min_area) | |
scales = np.clip(scales, 0.5, 1.0) | |
return scales | |
class PoseLocalVisualizer(OpencvBackendVisualizer): | |
"""MMPose Local Visualizer. | |
Args: | |
name (str): Name of the instance. Defaults to 'visualizer'. | |
image (np.ndarray, optional): the origin image to draw. The format | |
should be RGB. Defaults to ``None`` | |
vis_backends (list, optional): Visual backend config list. Defaults to | |
``None`` | |
save_dir (str, optional): Save file dir for all storage backends. | |
If it is ``None``, the backend storage will not save any data. | |
Defaults to ``None`` | |
bbox_color (str, tuple(int), optional): Color of bbox lines. | |
The tuple of color should be in BGR order. Defaults to ``'green'`` | |
kpt_color (str, tuple(tuple(int)), optional): Color of keypoints. | |
The tuple of color should be in BGR order. Defaults to ``'red'`` | |
link_color (str, tuple(tuple(int)), optional): Color of skeleton. | |
The tuple of color should be in BGR order. Defaults to ``None`` | |
line_width (int, float): The width of lines. Defaults to 1 | |
radius (int, float): The radius of keypoints. Defaults to 4 | |
show_keypoint_weight (bool): Whether to adjust the transparency | |
of keypoints according to their score. Defaults to ``False`` | |
alpha (int, float): The transparency of bboxes. Defaults to ``0.8`` | |
Examples: | |
>>> import numpy as np | |
>>> from mmengine.structures import InstanceData | |
>>> from mmpose.structures import PoseDataSample | |
>>> from mmpose.visualization import PoseLocalVisualizer | |
>>> pose_local_visualizer = PoseLocalVisualizer(radius=1) | |
>>> image = np.random.randint(0, 256, | |
... size=(10, 12, 3)).astype('uint8') | |
>>> gt_instances = InstanceData() | |
>>> gt_instances.keypoints = np.array([[[1, 1], [2, 2], [4, 4], | |
... [8, 8]]]) | |
>>> gt_pose_data_sample = PoseDataSample() | |
>>> gt_pose_data_sample.gt_instances = gt_instances | |
>>> dataset_meta = {'skeleton_links': [[0, 1], [1, 2], [2, 3]]} | |
>>> pose_local_visualizer.set_dataset_meta(dataset_meta) | |
>>> pose_local_visualizer.add_datasample('image', image, | |
... gt_pose_data_sample) | |
>>> pose_local_visualizer.add_datasample( | |
... 'image', image, gt_pose_data_sample, | |
... out_file='out_file.jpg') | |
>>> pose_local_visualizer.add_datasample( | |
... 'image', image, gt_pose_data_sample, | |
... show=True) | |
>>> pred_instances = InstanceData() | |
>>> pred_instances.keypoints = np.array([[[1, 1], [2, 2], [4, 4], | |
... [8, 8]]]) | |
>>> pred_instances.score = np.array([0.8, 1, 0.9, 1]) | |
>>> pred_pose_data_sample = PoseDataSample() | |
>>> pred_pose_data_sample.pred_instances = pred_instances | |
>>> pose_local_visualizer.add_datasample('image', image, | |
... gt_pose_data_sample, | |
... pred_pose_data_sample) | |
""" | |
def __init__(self, | |
name: str = 'visualizer', | |
image: Optional[np.ndarray] = None, | |
vis_backends: Optional[Dict] = None, | |
save_dir: Optional[str] = None, | |
bbox_color: Optional[Union[str, Tuple[int]]] = 'green', | |
kpt_color: Optional[Union[str, Tuple[Tuple[int]]]] = 'red', | |
link_color: Optional[Union[str, Tuple[Tuple[int]]]] = None, | |
text_color: Optional[Union[str, | |
Tuple[int]]] = (255, 255, 255), | |
skeleton: Optional[Union[List, Tuple]] = None, | |
line_width: Union[int, float] = 1, | |
radius: Union[int, float] = 3, | |
show_keypoint_weight: bool = False, | |
backend: str = 'opencv', | |
alpha: float = 0.8): | |
super().__init__( | |
name=name, | |
image=image, | |
vis_backends=vis_backends, | |
save_dir=save_dir, | |
backend=backend) | |
self.bbox_color = bbox_color | |
self.kpt_color = kpt_color | |
self.link_color = link_color | |
self.line_width = line_width | |
self.text_color = text_color | |
self.skeleton = skeleton | |
self.radius = radius | |
self.alpha = alpha | |
self.show_keypoint_weight = show_keypoint_weight | |
# Set default value. When calling | |
# `PoseLocalVisualizer().set_dataset_meta(xxx)`, | |
# it will override the default value. | |
self.dataset_meta = {} | |
def set_dataset_meta(self, | |
dataset_meta: Dict, | |
skeleton_style: str = 'mmpose'): | |
"""Assign dataset_meta to the visualizer. The default visualization | |
settings will be overridden. | |
Args: | |
dataset_meta (dict): meta information of dataset. | |
""" | |
if dataset_meta.get( | |
'dataset_name') == 'coco' and skeleton_style == 'openpose': | |
dataset_meta = parse_pose_metainfo( | |
dict(from_file='configs/_base_/datasets/coco_openpose.py')) | |
if isinstance(dataset_meta, dict): | |
self.dataset_meta = dataset_meta.copy() | |
self.bbox_color = dataset_meta.get('bbox_color', self.bbox_color) | |
self.kpt_color = dataset_meta.get('keypoint_colors', | |
self.kpt_color) | |
self.link_color = dataset_meta.get('skeleton_link_colors', | |
self.link_color) | |
self.skeleton = dataset_meta.get('skeleton_links', self.skeleton) | |
# sometimes self.dataset_meta is manually set, which might be None. | |
# it should be converted to a dict at these times | |
if self.dataset_meta is None: | |
self.dataset_meta = {} | |
def _draw_instances_bbox(self, image: np.ndarray, | |
instances: InstanceData) -> np.ndarray: | |
"""Draw bounding boxes and corresponding labels of GT or prediction. | |
Args: | |
image (np.ndarray): The image to draw. | |
instances (:obj:`InstanceData`): Data structure for | |
instance-level annotations or predictions. | |
Returns: | |
np.ndarray: the drawn image which channel is RGB. | |
""" | |
self.set_image(image) | |
if 'bboxes' in instances: | |
bboxes = instances.bboxes | |
self.draw_bboxes( | |
bboxes, | |
edge_colors=self.bbox_color, | |
alpha=self.alpha, | |
line_widths=self.line_width) | |
else: | |
return self.get_image() | |
if 'labels' in instances and self.text_color is not None: | |
classes = self.dataset_meta.get('classes', None) | |
labels = instances.labels | |
positions = bboxes[:, :2] | |
areas = (bboxes[:, 3] - bboxes[:, 1]) * ( | |
bboxes[:, 2] - bboxes[:, 0]) | |
scales = _get_adaptive_scales(areas) | |
for i, (pos, label) in enumerate(zip(positions, labels)): | |
label_text = classes[ | |
label] if classes is not None else f'class {label}' | |
if isinstance(self.bbox_color, | |
tuple) and max(self.bbox_color) > 1: | |
facecolor = [c / 255.0 for c in self.bbox_color] | |
else: | |
facecolor = self.bbox_color | |
self.draw_texts( | |
label_text, | |
pos, | |
colors=self.text_color, | |
font_sizes=int(13 * scales[i]), | |
vertical_alignments='bottom', | |
bboxes=[{ | |
'facecolor': facecolor, | |
'alpha': 0.8, | |
'pad': 0.7, | |
'edgecolor': 'none' | |
}]) | |
return self.get_image() | |
def _draw_instances_kpts(self, | |
image: np.ndarray, | |
instances: InstanceData, | |
kpt_thr: float = 0.3, | |
show_kpt_idx: bool = False, | |
skeleton_style: str = 'mmpose'): | |
"""Draw keypoints and skeletons (optional) of GT or prediction. | |
Args: | |
image (np.ndarray): The image to draw. | |
instances (:obj:`InstanceData`): Data structure for | |
instance-level annotations or predictions. | |
kpt_thr (float, optional): Minimum threshold of keypoints | |
to be shown. Default: 0.3. | |
show_kpt_idx (bool): Whether to show the index of keypoints. | |
Defaults to ``False`` | |
skeleton_style (str): Skeleton style selection. Defaults to | |
``'mmpose'`` | |
Returns: | |
np.ndarray: the drawn image which channel is RGB. | |
""" | |
self.set_image(image) | |
img_h, img_w, _ = image.shape | |
if 'keypoints' in instances: | |
keypoints = instances.get('transformed_keypoints', | |
instances.keypoints) | |
if 'keypoint_scores' in instances: | |
scores = instances.keypoint_scores | |
else: | |
scores = np.ones(keypoints.shape[:-1]) | |
if 'keypoints_visible' in instances: | |
keypoints_visible = instances.keypoints_visible | |
else: | |
keypoints_visible = np.ones(keypoints.shape[:-1]) | |
if skeleton_style == 'openpose': | |
keypoints_info = np.concatenate( | |
(keypoints, scores[..., None], keypoints_visible[..., | |
None]), | |
axis=-1) | |
# compute neck joint | |
neck = np.mean(keypoints_info[:, [5, 6]], axis=1) | |
# neck score when visualizing pred | |
neck[:, 2:4] = np.logical_and( | |
keypoints_info[:, 5, 2:4] > kpt_thr, | |
keypoints_info[:, 6, 2:4] > kpt_thr).astype(int) | |
new_keypoints_info = np.insert( | |
keypoints_info, 17, neck, axis=1) | |
mmpose_idx = [ | |
17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3 | |
] | |
openpose_idx = [ | |
1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17 | |
] | |
new_keypoints_info[:, openpose_idx] = \ | |
new_keypoints_info[:, mmpose_idx] | |
keypoints_info = new_keypoints_info | |
keypoints, scores, keypoints_visible = keypoints_info[ | |
..., :2], keypoints_info[..., 2], keypoints_info[..., 3] | |
for kpts, score, visible in zip(keypoints, scores, | |
keypoints_visible): | |
kpts = np.array(kpts, copy=False) | |
if self.kpt_color is None or isinstance(self.kpt_color, str): | |
kpt_color = [self.kpt_color] * len(kpts) | |
elif len(self.kpt_color) == len(kpts): | |
kpt_color = self.kpt_color | |
else: | |
raise ValueError( | |
f'the length of kpt_color ' | |
f'({len(self.kpt_color)}) does not matches ' | |
f'that of keypoints ({len(kpts)})') | |
# draw links | |
if self.skeleton is not None and self.link_color is not None: | |
if self.link_color is None or isinstance( | |
self.link_color, str): | |
link_color = [self.link_color] * len(self.skeleton) | |
elif len(self.link_color) == len(self.skeleton): | |
link_color = self.link_color | |
else: | |
raise ValueError( | |
f'the length of link_color ' | |
f'({len(self.link_color)}) does not matches ' | |
f'that of skeleton ({len(self.skeleton)})') | |
for sk_id, sk in enumerate(self.skeleton): | |
pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1])) | |
pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1])) | |
if not (visible[sk[0]] and visible[sk[1]]): | |
continue | |
if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 | |
or pos1[1] >= img_h or pos2[0] <= 0 | |
or pos2[0] >= img_w or pos2[1] <= 0 | |
or pos2[1] >= img_h or score[sk[0]] < kpt_thr | |
or score[sk[1]] < kpt_thr | |
or link_color[sk_id] is None): | |
# skip the link that should not be drawn | |
continue | |
X = np.array((pos1[0], pos2[0])) | |
Y = np.array((pos1[1], pos2[1])) | |
color = link_color[sk_id] | |
if not isinstance(color, str): | |
color = tuple(int(c) for c in color) | |
transparency = self.alpha | |
if self.show_keypoint_weight: | |
transparency *= max( | |
0, min(1, 0.5 * (score[sk[0]] + score[sk[1]]))) | |
if skeleton_style == 'openpose': | |
mX = np.mean(X) | |
mY = np.mean(Y) | |
length = ((Y[0] - Y[1])**2 + (X[0] - X[1])**2)**0.5 | |
angle = math.degrees( | |
math.atan2(Y[0] - Y[1], X[0] - X[1])) | |
stickwidth = 2 | |
polygons = cv2.ellipse2Poly( | |
(int(mX), int(mY)), | |
(int(length / 2), int(stickwidth)), int(angle), | |
0, 360, 1) | |
self.draw_polygons( | |
polygons, | |
edge_colors=color, | |
face_colors=color, | |
alpha=transparency) | |
else: | |
self.draw_lines( | |
X, Y, color, line_widths=self.line_width) | |
# draw each point on image | |
for kid, kpt in enumerate(kpts): | |
if score[kid] < kpt_thr or not visible[ | |
kid] or kpt_color[kid] is None: | |
# skip the point that should not be drawn | |
continue | |
color = kpt_color[kid] | |
if not isinstance(color, str): | |
color = tuple(int(c) for c in color) | |
transparency = self.alpha | |
if self.show_keypoint_weight: | |
transparency *= max(0, min(1, score[kid])) | |
self.draw_circles( | |
kpt, | |
radius=np.array([self.radius]), | |
face_colors=color, | |
edge_colors=color, | |
alpha=transparency, | |
line_widths=self.radius) | |
if show_kpt_idx: | |
kpt[0] += self.radius | |
kpt[1] -= self.radius | |
self.draw_texts( | |
str(kid), | |
kpt, | |
colors=color, | |
font_sizes=self.radius * 3, | |
vertical_alignments='bottom', | |
horizontal_alignments='center') | |
return self.get_image() | |
def _draw_instance_heatmap( | |
self, | |
fields: PixelData, | |
overlaid_image: Optional[np.ndarray] = None, | |
): | |
"""Draw heatmaps of GT or prediction. | |
Args: | |
fields (:obj:`PixelData`): Data structure for | |
pixel-level annotations or predictions. | |
overlaid_image (np.ndarray): The image to draw. | |
Returns: | |
np.ndarray: the drawn image which channel is RGB. | |
""" | |
if 'heatmaps' not in fields: | |
return None | |
heatmaps = fields.heatmaps | |
if isinstance(heatmaps, np.ndarray): | |
heatmaps = torch.from_numpy(heatmaps) | |
if heatmaps.dim() == 3: | |
heatmaps, _ = heatmaps.max(dim=0) | |
heatmaps = heatmaps.unsqueeze(0) | |
out_image = self.draw_featmap(heatmaps, overlaid_image) | |
return out_image | |
def _draw_instance_xy_heatmap( | |
self, | |
fields: PixelData, | |
overlaid_image: Optional[np.ndarray] = None, | |
n: int = 20, | |
): | |
"""Draw heatmaps of GT or prediction. | |
Args: | |
fields (:obj:`PixelData`): Data structure for | |
pixel-level annotations or predictions. | |
overlaid_image (np.ndarray): The image to draw. | |
n (int): Number of keypoint, up to 20. | |
Returns: | |
np.ndarray: the drawn image which channel is RGB. | |
""" | |
if 'heatmaps' not in fields: | |
return None | |
heatmaps = fields.heatmaps | |
_, h, w = heatmaps.shape | |
if isinstance(heatmaps, np.ndarray): | |
heatmaps = torch.from_numpy(heatmaps) | |
out_image = SimCCVisualizer().draw_instance_xy_heatmap( | |
heatmaps, overlaid_image, n) | |
out_image = cv2.resize(out_image[:, :, ::-1], (w, h)) | |
return out_image | |
def add_datasample(self, | |
name: str, | |
image: np.ndarray, | |
data_sample: PoseDataSample, | |
draw_gt: bool = True, | |
draw_pred: bool = True, | |
draw_heatmap: bool = False, | |
draw_bbox: bool = False, | |
show_kpt_idx: bool = False, | |
skeleton_style: str = 'mmpose', | |
show: bool = False, | |
wait_time: float = 0, | |
out_file: Optional[str] = None, | |
kpt_thr: float = 0.3, | |
step: int = 0) -> None: | |
"""Draw datasample and save to all backends. | |
- If GT and prediction are plotted at the same time, they are | |
displayed in a stitched image where the left image is the | |
ground truth and the right image is the prediction. | |
- If ``show`` is True, all storage backends are ignored, and | |
the images will be displayed in a local window. | |
- If ``out_file`` is specified, the drawn image will be | |
saved to ``out_file``. t is usually used when the display | |
is not available. | |
Args: | |
name (str): The image identifier | |
image (np.ndarray): The image to draw | |
data_sample (:obj:`PoseDataSample`, optional): The data sample | |
to visualize | |
draw_gt (bool): Whether to draw GT PoseDataSample. Default to | |
``True`` | |
draw_pred (bool): Whether to draw Prediction PoseDataSample. | |
Defaults to ``True`` | |
draw_bbox (bool): Whether to draw bounding boxes. Default to | |
``False`` | |
draw_heatmap (bool): Whether to draw heatmaps. Defaults to | |
``False`` | |
show_kpt_idx (bool): Whether to show the index of keypoints. | |
Defaults to ``False`` | |
skeleton_style (str): Skeleton style selection. Defaults to | |
``'mmpose'`` | |
show (bool): Whether to display the drawn image. Default to | |
``False`` | |
wait_time (float): The interval of show (s). Defaults to 0 | |
out_file (str): Path to output file. Defaults to ``None`` | |
kpt_thr (float, optional): Minimum threshold of keypoints | |
to be shown. Default: 0.3. | |
step (int): Global step value to record. Defaults to 0 | |
""" | |
gt_img_data = None | |
pred_img_data = None | |
if draw_gt: | |
gt_img_data = image.copy() | |
gt_img_heatmap = None | |
# draw bboxes & keypoints | |
if 'gt_instances' in data_sample: | |
gt_img_data = self._draw_instances_kpts( | |
gt_img_data, data_sample.gt_instances, kpt_thr, | |
show_kpt_idx, skeleton_style) | |
if draw_bbox: | |
gt_img_data = self._draw_instances_bbox( | |
gt_img_data, data_sample.gt_instances) | |
# draw heatmaps | |
if 'gt_fields' in data_sample and draw_heatmap: | |
gt_img_heatmap = self._draw_instance_heatmap( | |
data_sample.gt_fields, image) | |
if gt_img_heatmap is not None: | |
gt_img_data = np.concatenate((gt_img_data, gt_img_heatmap), | |
axis=0) | |
if draw_pred: | |
pred_img_data = image.copy() | |
pred_img_heatmap = None | |
# draw bboxes & keypoints | |
if 'pred_instances' in data_sample: | |
pred_img_data = self._draw_instances_kpts( | |
pred_img_data, data_sample.pred_instances, kpt_thr, | |
show_kpt_idx, skeleton_style) | |
if draw_bbox: | |
pred_img_data = self._draw_instances_bbox( | |
pred_img_data, data_sample.pred_instances) | |
# draw heatmaps | |
if 'pred_fields' in data_sample and draw_heatmap: | |
if 'keypoint_x_labels' in data_sample.pred_instances: | |
pred_img_heatmap = self._draw_instance_xy_heatmap( | |
data_sample.pred_fields, image) | |
else: | |
pred_img_heatmap = self._draw_instance_heatmap( | |
data_sample.pred_fields, image) | |
if pred_img_heatmap is not None: | |
pred_img_data = np.concatenate( | |
(pred_img_data, pred_img_heatmap), axis=0) | |
# merge visualization results | |
if gt_img_data is not None and pred_img_data is not None: | |
if gt_img_heatmap is None and pred_img_heatmap is not None: | |
gt_img_data = np.concatenate((gt_img_data, image), axis=0) | |
elif gt_img_heatmap is not None and pred_img_heatmap is None: | |
pred_img_data = np.concatenate((pred_img_data, image), axis=0) | |
drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1) | |
elif gt_img_data is not None: | |
drawn_img = gt_img_data | |
else: | |
drawn_img = pred_img_data | |
# It is convenient for users to obtain the drawn image. | |
# For example, the user wants to obtain the drawn image and | |
# save it as a video during video inference. | |
self.set_image(drawn_img) | |
if show: | |
self.show(drawn_img, win_name=name, wait_time=wait_time) | |
if out_file is not None: | |
mmcv.imwrite(drawn_img[..., ::-1], out_file) | |
else: | |
# save drawn_img to backends | |
self.add_image(name, drawn_img, step) | |
return self.get_image() | |