| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import re | 
					
					
						
						| 
							 | 
						from dataclasses import asdict, dataclass | 
					
					
						
						| 
							 | 
						from typing import Any, Dict, List, Optional, Pattern, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torchaudio | 
					
					
						
						| 
							 | 
						from encodec import EncodecModel | 
					
					
						
						| 
							 | 
						from encodec.utils import convert_audio | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def remove_encodec_weight_norm(model): | 
					
					
						
						| 
							 | 
						    from encodec.modules import SConv1d | 
					
					
						
						| 
							 | 
						    from encodec.modules.seanet import SConvTranspose1d, SEANetResnetBlock | 
					
					
						
						| 
							 | 
						    from torch.nn.utils import remove_weight_norm | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    encoder = model.encoder.model | 
					
					
						
						| 
							 | 
						    for key in encoder._modules: | 
					
					
						
						| 
							 | 
						        if isinstance(encoder._modules[key], SEANetResnetBlock): | 
					
					
						
						| 
							 | 
						            remove_weight_norm(encoder._modules[key].shortcut.conv.conv) | 
					
					
						
						| 
							 | 
						            block_modules = encoder._modules[key].block._modules | 
					
					
						
						| 
							 | 
						            for skey in block_modules: | 
					
					
						
						| 
							 | 
						                if isinstance(block_modules[skey], SConv1d): | 
					
					
						
						| 
							 | 
						                    remove_weight_norm(block_modules[skey].conv.conv) | 
					
					
						
						| 
							 | 
						        elif isinstance(encoder._modules[key], SConv1d): | 
					
					
						
						| 
							 | 
						            remove_weight_norm(encoder._modules[key].conv.conv) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    decoder = model.decoder.model | 
					
					
						
						| 
							 | 
						    for key in decoder._modules: | 
					
					
						
						| 
							 | 
						        if isinstance(decoder._modules[key], SEANetResnetBlock): | 
					
					
						
						| 
							 | 
						            remove_weight_norm(decoder._modules[key].shortcut.conv.conv) | 
					
					
						
						| 
							 | 
						            block_modules = decoder._modules[key].block._modules | 
					
					
						
						| 
							 | 
						            for skey in block_modules: | 
					
					
						
						| 
							 | 
						                if isinstance(block_modules[skey], SConv1d): | 
					
					
						
						| 
							 | 
						                    remove_weight_norm(block_modules[skey].conv.conv) | 
					
					
						
						| 
							 | 
						        elif isinstance(decoder._modules[key], SConvTranspose1d): | 
					
					
						
						| 
							 | 
						            remove_weight_norm(decoder._modules[key].convtr.convtr) | 
					
					
						
						| 
							 | 
						        elif isinstance(decoder._modules[key], SConv1d): | 
					
					
						
						| 
							 | 
						            remove_weight_norm(decoder._modules[key].conv.conv) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class AudioTokenizer: | 
					
					
						
						| 
							 | 
						    """EnCodec audio.""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        device: Any = None, | 
					
					
						
						| 
							 | 
						    ) -> None: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        model = EncodecModel.encodec_model_24khz() | 
					
					
						
						| 
							 | 
						        model.set_target_bandwidth(6.0) | 
					
					
						
						| 
							 | 
						        remove_encodec_weight_norm(model) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if not device: | 
					
					
						
						| 
							 | 
						            device = torch.device("cpu") | 
					
					
						
						| 
							 | 
						            if torch.cuda.is_available(): | 
					
					
						
						| 
							 | 
						                device = torch.device("cuda:0") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self._device = device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.codec = model.to(device) | 
					
					
						
						| 
							 | 
						        self.sample_rate = model.sample_rate | 
					
					
						
						| 
							 | 
						        self.channels = model.channels | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def device(self): | 
					
					
						
						| 
							 | 
						        return self._device | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def encode(self, wav: torch.Tensor) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        return self.codec.encode(wav.to(self.device)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def decode(self, frames: torch.Tensor) -> torch.Tensor: | 
					
					
						
						| 
							 | 
						        return self.codec.decode(frames) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def tokenize_audio(tokenizer: AudioTokenizer, audio): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if isinstance(audio, str): | 
					
					
						
						| 
							 | 
						        wav, sr = torchaudio.load(audio) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        wav, sr = audio | 
					
					
						
						| 
							 | 
						    wav = convert_audio(wav, sr, tokenizer.sample_rate, tokenizer.channels) | 
					
					
						
						| 
							 | 
						    wav = wav.unsqueeze(0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    with torch.no_grad(): | 
					
					
						
						| 
							 | 
						        encoded_frames = tokenizer.encode(wav) | 
					
					
						
						| 
							 | 
						    return encoded_frames | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    model = EncodecModel.encodec_model_24khz() | 
					
					
						
						| 
							 | 
						    model.set_target_bandwidth(6.0) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    samples = torch.from_numpy(np.random.random([4, 1, 1600])).type( | 
					
					
						
						| 
							 | 
						        torch.float32 | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    codes_raw = model.encode(samples) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    remove_encodec_weight_norm(model) | 
					
					
						
						| 
							 | 
						    codes_norm = model.encode(samples) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    assert torch.allclose(codes_raw[0][0], codes_norm[0][0]) | 
					
					
						
						| 
							 | 
						
 |