VideoLLaMA2 / videollama2 /eval /eval_benchmark_3_context.py
ClownRat's picture
init demo.
e428df4
raw
history blame
8.68 kB
import os
import argparse
import json
import ast
import traceback
from tqdm import tqdm
from multiprocessing.pool import Pool
from openai import AzureOpenAI
def init():
client = AzureOpenAI(
azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT"),
api_key=os.getenv("AZURE_OPENAI_KEY"),
api_version="2024-02-15-preview"
)
return client
def interaction(client, message_text):
completion = client.chat.completions.create(
model=os.getenv("AZURE_OPENAI_DEPLOYNAME"),
messages = message_text,
temperature=0.7,
max_tokens=800,
top_p=0.95,
frequency_penalty=0,
presence_penalty=0,
stop=None
)
return completion
def annotate(prediction_set, caption_files, output_dir, args):
"""
Evaluates question and answer pairs using GPT-3 and
returns a score for contextual understanding.
"""
for file in tqdm(caption_files):
key = file[:-5] # Strip file extension
qa_set = prediction_set[key]
question = qa_set['q']
answer = qa_set['a']
pred = qa_set['p']
try:
# Compute the contextual understanding score
message = [
{
"role": "system",
"content":
"You are an intelligent chatbot designed for evaluating the contextual understanding of generative outputs for video-based question-answer pairs. "
"Your task is to compare the predicted answer with the correct answer and determine if the generated response aligns with the overall context of the video content. Here's how you can accomplish the task:"
"------"
"##INSTRUCTIONS: "
"- Evaluate whether the predicted answer aligns with the overall context of the video content. It should not provide information that is out of context or misaligned.\n"
"- The predicted answer must capture the main themes and sentiments of the video.\n"
"- Consider synonyms or paraphrases as valid matches.\n"
"- Provide your evaluation of the contextual understanding of the prediction compared to the answer."
},
{
"role": "user",
"content":
"Please evaluate the following video-based question-answer pair:\n\n"
f"Question: {question}\n"
f"Correct Answer: {answer}\n"
f"Predicted Answer: {pred}\n\n"
"Provide your evaluation only as a contextual understanding score where the contextual understanding score is an integer value between 0 and 5, with 5 indicating the highest level of contextual understanding. "
"Please generate the response in the form of a Python dictionary string with keys 'score', where its value is contextual understanding score in INTEGER, not STRING."
"DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. "
"For example, your response should look like this: {''score': 4.8}."
}
]
completion = interaction(client, message)
# Convert response to a Python dictionary.
response_message = completion.choices[0].message.content
response_dict = ast.literal_eval(response_message)
result_qa_pair = [response_dict, qa_set]
# Save the question-answer pairs to a json file.
with open(f"{output_dir}/{key}.json", "w") as f:
json.dump(result_qa_pair, f)
except Exception as e:
print(f"Error processing file '{key}': {e}")
def main(args):
pred_contents = [eval(line) for line in open(args.pred_path, 'r').readlines()]
# Dictionary to store the count of occurrences for each video_id
video_id_counts = {}
new_pred_contents = []
# Iterate through each sample in pred_contents
for sample in pred_contents:
video_id = sample['video_name']
if video_id in video_id_counts:
video_id_counts[video_id] += 1
else:
video_id_counts[video_id] = 0
# Create a new sample with the modified key
new_sample = sample
new_sample['video_name'] = f"{video_id}_{video_id_counts[video_id]}"
new_pred_contents.append(new_sample)
# Generating list of id's and corresponding files
id_list = [x['video_name'] for x in new_pred_contents]
caption_files = [f"{id}.json" for id in id_list]
output_dir = args.output_dir
# Generate output directory if not exists.
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Preparing dictionary of question-answer sets
prediction_set = {}
for sample in new_pred_contents:
id = sample['video_name']
question = sample['Q']
answer = sample['A']
pred = sample['P']
qa_set = {"q": question, "a": answer, "p": pred}
prediction_set[id] = qa_set
# Set the OpenAI API key.
# openai.api_key = args.api_key
num_tasks = args.num_tasks
# While loop to ensure that all captions are processed.
while True:
try:
# Files that have not been processed yet.
completed_files = os.listdir(output_dir)
print(f"completed_files: {len(completed_files)}")
# Files that have not been processed yet.
incomplete_files = [f for f in caption_files if f not in completed_files]
print(f"incomplete_files: {len(incomplete_files)}")
# Break the loop when there are no incomplete files
if len(incomplete_files) == 0:
break
if len(incomplete_files) <= num_tasks:
num_tasks = 1
# Split tasks into parts.
part_len = len(incomplete_files) // num_tasks
all_parts = [incomplete_files[i:i + part_len] for i in range(0, len(incomplete_files), part_len)]
task_args = [(prediction_set, part, args.output_dir, args) for part in all_parts]
# Use a pool of workers to process the files in parallel.
with Pool() as pool:
pool.starmap(annotate, task_args)
except Exception as e:
print(f"Error: {e}")
# Combine all the processed files into one
combined_contents = {}
json_path = args.output_json
# Iterate through json files
for file_name in tqdm(os.listdir(output_dir)):
if file_name.endswith(".json"):
file_path = os.path.join(output_dir, file_name)
with open(file_path, "r") as json_file:
content = json.load(json_file)
combined_contents[file_name[:-5]] = content
# Write combined content to a json file
with open(json_path, "w") as json_file:
json.dump(combined_contents, json_file)
print("All evaluation completed!")
# Calculate average score
score_sum = 0
count = 0
for key, result in combined_contents.items():
count += 1
score_match = result[0]['score']
score = int(score_match)
score_sum += score
average_score = score_sum / count
print("Average score for contextual understanding:", average_score)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="question-answer-generation-using-gpt-3")
parser.add_argument("--pred-path", required=True, help="The path to file containing prediction.")
parser.add_argument("--output-dir", required=True, help="The path to save annotation json files.")
parser.add_argument("--output-json", required=True, help="The path to save annotation final combined json file.")
parser.add_argument("--num-tasks", required=True, type=int, help="Number of splits.")
parser.add_argument("--api-key", required=True, type=str, help="Azure Openai API key.")
parser.add_argument("--api-endpoint", required=True, type=str, help="Azure Openai API endpoint.")
parser.add_argument("--api-deployname", required=True, type=str, help="Azure Openai API deployname.")
args = parser.parse_args()
# Set the OpenAI API key.
os.environ["AZURE_OPENAI_KEY"] = args.api_key
os.environ["AZURE_OPENAI_ENDPOINT"] = args.api_endpoint
os.environ["AZURE_OPENAI_DEPLOYNAME"] = args.api_deployname
client = init()
main(args)