Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Modification of Open-MAGVIT2 code, including adding gradient accumulation during training, using VQConfig, | |
removing hardcoded arguments and removing unnecessary code. | |
""" | |
import torch | |
import torch.nn.functional as F | |
import lightning as L | |
from collections import OrderedDict | |
from contextlib import contextmanager | |
from magvit2.config import VQConfig | |
from magvit2.modules.diffusionmodules.improved_model import Encoder, Decoder | |
from magvit2.modules.losses.vqperceptual import VQLPIPSWithDiscriminator | |
from magvit2.modules.vqvae.lookup_free_quantize import LFQ | |
from magvit2.modules.scheduler.lr_scheduler import Scheduler_LinearWarmup, Scheduler_LinearWarmup_CosineDecay | |
from magvit2.modules.ema import LitEma | |
class VQModel(L.LightningModule): | |
def __init__( | |
self, | |
config: VQConfig, | |
training_args=None, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="image", | |
colorize_nlabels=None, | |
monitor=None, | |
use_ema=True, | |
stage=None, | |
): | |
super().__init__() | |
self.training_args = training_args | |
self.image_key = image_key | |
self.encoder = Encoder(config) | |
self.decoder = Decoder(config) | |
self.loss = VQLPIPSWithDiscriminator(config) | |
self.quantize = LFQ(config) | |
self.use_ema = use_ema | |
self.stage = stage | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, stage=stage) | |
self.image_key = image_key | |
if colorize_nlabels is not None: | |
assert isinstance(colorize_nlabels, int) | |
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
if monitor is not None: | |
self.monitor = monitor | |
self.generator_params = list(self.encoder.parameters()) + \ | |
list(self.decoder.parameters()) + \ | |
list(self.quantize.parameters()) | |
if self.use_ema and stage is None: #no need to construct ema when training transformer | |
self.model_ema = LitEma(self) # Note: this means EMA weights are overriden after `init_from_ckpt`. | |
self.automatic_optimization = False | |
self.strict_loading = False | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.parameters()) | |
self.model_ema.copy_to(self) | |
if context is not None: | |
print(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.parameters()) | |
if context is not None: | |
print(f"{context}: Restored training weights") | |
def state_dict(self, *args, destination=None, prefix='', keep_vars=False): | |
""" | |
save the state_dict and filter out the | |
""" | |
return {k: v for k, v in super().state_dict(*args, destination, prefix, keep_vars).items() if | |
("inception_model" not in k and "lpips_vgg" not in k and "lpips_alex" not in k)} | |
def init_from_ckpt(self, path, ignore_keys=list(), stage=None): | |
sd = torch.load(path, map_location="cpu")["state_dict"] | |
ema_mapping = {} | |
new_params = OrderedDict() | |
if stage == "transformer": ### directly use ema encoder and decoder parameter | |
if self.use_ema: | |
for k, v in sd.items(): | |
if "encoder" in k: | |
if "model_ema" in k: | |
k = k.replace("model_ema.", "") #load EMA Encoder or Decoder | |
new_k = ema_mapping[k] | |
new_params[new_k] = v | |
s_name = k.replace('.', '') | |
ema_mapping.update({s_name: k}) | |
continue | |
if "decoder" in k: | |
if "model_ema" in k: | |
k = k.replace("model_ema.", "") # load EMA Encoder or Decoder | |
new_k = ema_mapping[k] | |
new_params[new_k] = v | |
s_name = k.replace(".", "") | |
ema_mapping.update({s_name: k}) | |
continue | |
else: # also only load the Generator | |
for k, v in sd.items(): | |
if "encoder" in k: | |
new_params[k] = v | |
elif "decoder" in k: | |
new_params[k] = v | |
missing_keys, unexpected_keys = self.load_state_dict(new_params, strict=False) | |
else: ## simple resume | |
missing_keys, unexpected_keys = self.load_state_dict(sd, strict=False) | |
# print(f"{missing_keys=} {unexpected_keys=}") | |
print(f"Restored from {path}") | |
def encode_without_quantize(self, x): | |
h = self.encoder(x) | |
return h | |
def encode(self, x, **kwargs): | |
h = self.encoder(x) | |
(quant, emb_loss, info), loss_breakdown = self.quantize(h, return_loss_breakdown=True, **kwargs) | |
### using token factorization the info is a tuple (each for embedding) | |
return quant, emb_loss, info, loss_breakdown | |
def decode(self, quant): | |
dec = self.decoder(quant) | |
return dec | |
def forward(self, input): | |
quant, codebook_loss, _, loss_break = self.encode(input) | |
dec = self.decode(quant) | |
return dec, codebook_loss, loss_break | |
def get_input(self, batch, image_key): | |
x = batch[image_key] | |
if len(x.shape) == 3: # grayscale case I think? - Kevin | |
x = x[..., None] | |
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) | |
return x.float() | |
# fix mulitple optimizer bug | |
# refer to https://lightning.ai/docs/pytorch/stable/model/manual_optimization.html | |
def training_step(self, batch, batch_idx): | |
x = self.get_input(batch, self.image_key) | |
x_reconstructed, codebook_loss, loss_break = self(x) | |
# generator | |
aeloss, log_dict_ae = self.loss(codebook_loss, loss_break, x, x_reconstructed, 0, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.manual_backward(aeloss / self.training_args.grad_accum_steps, inputs=self.generator_params) | |
# https://discuss.pytorch.org/t/how-to-implement-gradient-accumulation-for-gan/112751/4 | |
# discriminator | |
discloss, log_dict_disc = self.loss(codebook_loss, loss_break, x, x_reconstructed, 1, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
# x_reconstructed gets detached, `codebook_loss` and `loss_break` unused | |
self.manual_backward(discloss / self.training_args.grad_accum_steps) | |
# TODO: clip grads? | |
if (batch_idx + 1) % self.training_args.grad_accum_steps == 0: # might not update at end of epoch? | |
opt_gen, opt_disc = self.optimizers() | |
scheduler_gen, scheduler_disc = self.lr_schedulers() | |
#################### | |
# fix global step bug | |
# refer to https://github.com/Lightning-AI/pytorch-lightning/issues/17958 | |
opt_disc._on_before_step = lambda: self.trainer.profiler.start("optimizer_step") | |
opt_disc._on_after_step = lambda: self.trainer.profiler.stop("optimizer_step") | |
# opt_gen._on_before_step = lambda: self.trainer.profiler.start("optimizer_step") | |
# opt_gen._on_after_step = lambda: self.trainer.profiler.stop("optimizer_step") | |
#################### | |
opt_gen.step() | |
scheduler_gen.step() | |
opt_gen.zero_grad() | |
opt_disc.step() | |
scheduler_disc.step() | |
opt_disc.zero_grad() | |
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
def on_train_batch_end(self, *args, **kwargs): | |
if self.use_ema: | |
self.model_ema(self) | |
def validation_step(self, batch, batch_idx): | |
if self.use_ema: | |
with self.ema_scope(): | |
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema") | |
else: | |
log_dict = self._validation_step(batch, batch_idx) | |
def _validation_step(self, batch, batch_idx, suffix=""): | |
x = self.get_input(batch, self.image_key) | |
quant, eloss, indices, loss_break = self.encode(x) | |
x_rec = self.decode(quant).clamp(-1, 1) | |
aeloss, log_dict_ae = self.loss(eloss, loss_break, x, x_rec, 0, self.global_step, | |
last_layer=self.get_last_layer(), split="val" + suffix) | |
discloss, log_dict_disc = self.loss(eloss, loss_break, x, x_rec, 1, self.global_step, | |
last_layer=self.get_last_layer(), split="val" + suffix) | |
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True) | |
return self.log_dict | |
def configure_optimizers(self): | |
lr = self.training_args.learning_rate | |
adam_betas = (self.training_args.adam_beta_1, self.training_args.adam_beta_2) | |
opt_gen = torch.optim.Adam(self.generator_params, | |
lr=lr, betas=adam_betas) | |
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), | |
lr=lr, betas=adam_betas) | |
# steps_per_epoch = len(self.trainer.datamodule._train_dataloader()) // self.trainer.world_size | |
steps_per_epoch = len(self.trainer.fit_loop._data_source.instance) // self.trainer.world_size // self.training_args.grad_accum_steps | |
if self.trainer.is_global_zero: | |
print(f"{steps_per_epoch=}") | |
warmup_steps = steps_per_epoch * self.training_args.warmup_epochs | |
training_steps = steps_per_epoch * self.trainer.max_epochs | |
if self.training_args.scheduler_type == "None": | |
return ({"optimizer": opt_gen}, {"optimizer": opt_disc}) | |
if self.training_args.scheduler_type == "linear-warmup": | |
scheduler_ae = torch.optim.lr_scheduler.LambdaLR(opt_gen, Scheduler_LinearWarmup(warmup_steps)) | |
scheduler_disc = torch.optim.lr_scheduler.LambdaLR(opt_disc, Scheduler_LinearWarmup(warmup_steps)) | |
elif self.training_args.scheduler_type == "linear-warmup_cosine-decay": | |
multipler_min = self.training_args.min_learning_rate / self.training_args.learning_rate | |
scheduler_ae = torch.optim.lr_scheduler.LambdaLR(opt_gen, Scheduler_LinearWarmup_CosineDecay( | |
warmup_steps=warmup_steps, max_steps=training_steps, multipler_min=multipler_min)) | |
scheduler_disc = torch.optim.lr_scheduler.LambdaLR(opt_disc, Scheduler_LinearWarmup_CosineDecay( | |
warmup_steps=warmup_steps, max_steps=training_steps, multipler_min=multipler_min)) | |
else: | |
raise NotImplementedError() | |
return {"optimizer": opt_gen, "lr_scheduler": scheduler_ae}, {"optimizer": opt_disc, | |
"lr_scheduler": scheduler_disc} | |
def get_last_layer(self): | |
return self.decoder.conv_out.weight | |
def log_images(self, batch, **kwargs): | |
log = dict() | |
x = self.get_input(batch, self.image_key) | |
x = x.to(self.device) | |
xrec, _ = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
xrec = self.to_rgb(xrec) | |
log["inputs"] = x | |
log["reconstructions"] = xrec | |
return log | |
def to_rgb(self, x): | |
assert self.image_key == "segmentation" | |
if not hasattr(self, "colorize"): | |
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
x = F.conv2d(x, weight=self.colorize) | |
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. | |
return x | |