Spaces:
Running
on
Zero
Running
on
Zero
# https://github.com/LTH14/mar/blob/main/models/diffloss.py | |
import torch | |
import torch.nn as nn | |
from torch.utils.checkpoint import checkpoint | |
import math | |
from .diffusion import create_diffusion | |
class DiffLoss(nn.Module): | |
"""Diffusion Loss""" | |
def __init__(self, target_channels, z_channels, depth, width, num_sampling_steps, grad_checkpointing=False): | |
super(DiffLoss, self).__init__() | |
self.in_channels = target_channels | |
self.net = SimpleMLPAdaLN( | |
in_channels=target_channels, | |
model_channels=width, | |
out_channels=target_channels * 2, # for vlb loss | |
z_channels=z_channels, | |
num_res_blocks=depth, | |
grad_checkpointing=grad_checkpointing | |
) | |
self.train_diffusion = create_diffusion(timestep_respacing="", noise_schedule="cosine") | |
self.gen_diffusion = create_diffusion(timestep_respacing=num_sampling_steps, noise_schedule="cosine") | |
def forward(self, target, z, mask=None): | |
t = torch.randint(0, self.train_diffusion.num_timesteps, (target.shape[0],), device=target.device) | |
model_kwargs = dict(c=z) | |
loss_dict = self.train_diffusion.training_losses(self.net, target, t, model_kwargs) | |
loss = loss_dict["loss"] | |
if mask is not None: | |
loss = (loss * mask).sum() / (mask.sum() + 1e-8) | |
return loss.mean() | |
def sample(self, z, temperature=1.0, cfg=1.0, clip_denoised=False): | |
# diffusion loss sampling | |
if not cfg == 1.0: | |
noise = torch.randn(z.shape[0] // 2, self.in_channels).cuda() | |
noise = torch.cat([noise, noise], dim=0) | |
model_kwargs = dict(c=z, cfg_scale=cfg) | |
sample_fn = self.net.forward_with_cfg | |
else: | |
noise = torch.randn(z.shape[0], self.in_channels).cuda() | |
model_kwargs = dict(c=z) | |
sample_fn = self.net.forward | |
sampled_token_latent = self.gen_diffusion.p_sample_loop( | |
sample_fn, noise.shape, noise, clip_denoised=clip_denoised, model_kwargs=model_kwargs, progress=False, | |
temperature=temperature | |
) | |
return sampled_token_latent | |
def modulate(x, shift, scale): | |
return x * (1 + scale) + shift | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, hidden_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def timestep_embedding(t, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def forward(self, t): | |
t_freq = self.timestep_embedding(t, self.frequency_embedding_size) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
class ResBlock(nn.Module): | |
""" | |
A residual block that can optionally change the number of channels. | |
:param channels: the number of input channels. | |
""" | |
def __init__( | |
self, | |
channels | |
): | |
super().__init__() | |
self.channels = channels | |
self.in_ln = nn.LayerNorm(channels, eps=1e-6) | |
self.mlp = nn.Sequential( | |
nn.Linear(channels, channels, bias=True), | |
nn.SiLU(), | |
nn.Linear(channels, channels, bias=True), | |
) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(channels, 3 * channels, bias=True) | |
) | |
def forward(self, x, y): | |
shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(y).chunk(3, dim=-1) | |
h = modulate(self.in_ln(x), shift_mlp, scale_mlp) | |
h = self.mlp(h) | |
return x + gate_mlp * h | |
class FinalLayer(nn.Module): | |
""" | |
The final layer adopted from DiT. | |
""" | |
def __init__(self, model_channels, out_channels): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(model_channels, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(model_channels, out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential( | |
nn.SiLU(), | |
nn.Linear(model_channels, 2 * model_channels, bias=True) | |
) | |
def forward(self, x, c): | |
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1) | |
x = modulate(self.norm_final(x), shift, scale) | |
x = self.linear(x) | |
return x | |
class SimpleMLPAdaLN(nn.Module): | |
""" | |
The MLP for Diffusion Loss. | |
:param in_channels: channels in the input Tensor. | |
:param model_channels: base channel count for the model. | |
:param out_channels: channels in the output Tensor. | |
:param z_channels: channels in the condition. | |
:param num_res_blocks: number of residual blocks per downsample. | |
""" | |
def __init__( | |
self, | |
in_channels, | |
model_channels, | |
out_channels, | |
z_channels, | |
num_res_blocks, | |
grad_checkpointing=False | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.out_channels = out_channels | |
self.num_res_blocks = num_res_blocks | |
self.grad_checkpointing = grad_checkpointing | |
self.time_embed = TimestepEmbedder(model_channels) | |
self.cond_embed = nn.Linear(z_channels, model_channels) | |
self.input_proj = nn.Linear(in_channels, model_channels) | |
res_blocks = [] | |
for i in range(num_res_blocks): | |
res_blocks.append(ResBlock( | |
model_channels, | |
)) | |
self.res_blocks = nn.ModuleList(res_blocks) | |
self.final_layer = FinalLayer(model_channels, out_channels) | |
self.initialize_weights() | |
def initialize_weights(self): | |
def _basic_init(module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.xavier_uniform_(module.weight, gain=0.1) # gain=1 | |
if module.bias is not None: | |
nn.init.constant_(module.bias, 0) | |
self.apply(_basic_init) | |
# Initialize timestep embedding MLP | |
nn.init.normal_(self.time_embed.mlp[0].weight, std=0.02) | |
nn.init.normal_(self.time_embed.mlp[2].weight, std=0.02) | |
# Zero-out adaLN modulation layers | |
for block in self.res_blocks: | |
nn.init.constant_(block.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(block.adaLN_modulation[-1].bias, 0) | |
# Zero-out output layers | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) | |
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) | |
nn.init.constant_(self.final_layer.linear.weight, 0) | |
nn.init.constant_(self.final_layer.linear.bias, 0) | |
def forward(self, x, t, c): | |
""" | |
Apply the model to an input batch. | |
:param x: an [N x C] Tensor of inputs. | |
:param t: a 1-D batch of timesteps. | |
:param c: conditioning from AR transformer. | |
:return: an [N x C] Tensor of outputs. | |
""" | |
x = self.input_proj(x) | |
t = self.time_embed(t) | |
c = self.cond_embed(c) | |
y = t + c | |
if self.grad_checkpointing and not torch.jit.is_scripting(): | |
for block in self.res_blocks: | |
x = checkpoint(block, x, y) | |
else: | |
for block in self.res_blocks: | |
x = block(x, y) | |
return self.final_layer(x, y) | |
def forward_with_cfg(self, x, t, c, cfg_scale): | |
half = x[: len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
model_out = self.forward(combined, t, c) | |
eps, rest = model_out[:, :self.in_channels], model_out[:, self.in_channels:] | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) |