Spaces:
Runtime error
Runtime error
| """ | |
| Modified Open-MAGVIT2 code to use VQConfig. | |
| """ | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from magvit2.config import VQConfig | |
| from magvit2.modules.losses.lpips import LPIPS | |
| from magvit2.modules.discriminator.model import NLayerDiscriminator, weights_init | |
| class DummyLoss(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def adopt_weight(weight, global_step, threshold=0, value=0.): | |
| if global_step < threshold: | |
| weight = value | |
| return weight | |
| def hinge_d_loss(logits_real, logits_fake): | |
| loss_real = torch.mean(F.relu(1. - logits_real)) | |
| loss_fake = torch.mean(F.relu(1. + logits_fake)) | |
| d_loss = 0.5 * (loss_real + loss_fake) | |
| return d_loss | |
| def vanilla_d_loss(logits_real, logits_fake): | |
| d_loss = 0.5 * ( | |
| torch.mean(torch.nn.functional.softplus(-logits_real)) + | |
| torch.mean(torch.nn.functional.softplus(logits_fake))) | |
| return d_loss | |
| def _sigmoid_cross_entropy_with_logits(labels, logits): | |
| """ | |
| non-saturating loss | |
| """ | |
| zeros = torch.zeros_like(logits, dtype=logits.dtype) | |
| condition = (logits >= zeros) | |
| relu_logits = torch.where(condition, logits, zeros) | |
| neg_abs_logits = torch.where(condition, -logits, logits) | |
| return relu_logits - logits * labels + torch.log1p(torch.exp(neg_abs_logits)) | |
| def non_saturate_gen_loss(logits_fake): | |
| """ | |
| logits_fake: [B 1 H W] | |
| """ | |
| B, _, _, _ = logits_fake.shape | |
| logits_fake = logits_fake.reshape(B, -1) | |
| logits_fake = torch.mean(logits_fake, dim=-1) | |
| gen_loss = torch.mean(_sigmoid_cross_entropy_with_logits( | |
| labels = torch.ones_like(logits_fake), logits=logits_fake | |
| )) | |
| return gen_loss | |
| def non_saturate_discriminator_loss(logits_real, logits_fake): | |
| B, _, _, _ = logits_fake.shape | |
| logits_real = logits_fake.reshape(B, -1) | |
| logits_fake = logits_fake.reshape(B, -1) | |
| logits_fake = logits_fake.mean(dim=-1) | |
| logits_real = logits_real.mean(dim=-1) | |
| real_loss = _sigmoid_cross_entropy_with_logits( | |
| labels=torch.ones_like(logits_real), logits=logits_real) | |
| fake_loss = _sigmoid_cross_entropy_with_logits( | |
| labels= torch.zeros_like(logits_fake), logits=logits_fake | |
| ) | |
| discr_loss = real_loss.mean() + fake_loss.mean() | |
| return discr_loss | |
| class LeCAM_EMA(object): | |
| def __init__(self, init=0., decay=0.999): | |
| self.logits_real_ema = init | |
| self.logits_fake_ema = init | |
| self.decay = decay | |
| def update(self, logits_real, logits_fake): | |
| self.logits_real_ema = self.logits_real_ema * self.decay + torch.mean(logits_real).item() * (1- self.decay) | |
| self.logits_fake_ema = self.logits_fake_ema * self.decay + torch.mean(logits_fake).item() * (1 - self.decay) | |
| def lecam_reg(real_pred, fake_pred, lecam_ema): | |
| reg = torch.mean(F.relu(real_pred - lecam_ema.logits_fake_ema).pow(2)) + \ | |
| torch.mean(F.relu(lecam_ema.logits_real_ema - fake_pred).pow(2)) | |
| return reg | |
| class VQLPIPSWithDiscriminator(nn.Module): | |
| # def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, | |
| # disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0, | |
| # commit_weight = 0.25, codebook_enlarge_ratio=3, codebook_enlarge_steps=2000, | |
| # perceptual_weight=1.0, use_actnorm=False, disc_conditional=False, | |
| # disc_ndf=64, disc_loss="hinge", gen_loss_weight=None, lecam_loss_weight=None): | |
| def __init__(self, config: VQConfig): | |
| super().__init__() | |
| assert config.disc_loss in ["hinge", "vanilla", "non_saturate"] | |
| self.codebook_weight = config.codebook_weight | |
| self.pixel_weight = config.pixelloss_weight | |
| self.perceptual_loss = LPIPS().eval() | |
| self.perceptual_weight = config.perceptual_weight | |
| self.commit_weight = config.commit_weight | |
| self.codebook_enlarge_ratio = config.codebook_enlarge_ratio | |
| self.codebook_enlarge_steps = config.codebook_enlarge_steps | |
| self.gen_loss_weight = config.gen_loss_weight | |
| self.lecam_loss_weight = config.lecam_loss_weight | |
| if self.lecam_loss_weight is not None: | |
| self.lecam_ema = LeCAM_EMA() | |
| self.discriminator = NLayerDiscriminator( | |
| input_nc=config.disc_in_channels, | |
| n_layers=config.disc_num_layers, | |
| use_actnorm=config.use_actnorm, | |
| ndf=config.disc_ndf | |
| ).apply(weights_init) | |
| self.discriminator_iter_start = config.disc_start | |
| self.disc_loss = { | |
| "hinge": hinge_d_loss, | |
| "vanilla": vanilla_d_loss, | |
| "non_saturate": non_saturate_discriminator_loss, | |
| }[config.disc_loss] | |
| print(f"VQLPIPSWithDiscriminator running with {config.disc_loss} loss.") | |
| self.disc_factor = config.disc_factor | |
| self.discriminator_weight = config.disc_weight | |
| self.disc_conditional = config.disc_conditional | |
| def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): | |
| if last_layer is not None: | |
| nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] | |
| g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
| else: | |
| nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] | |
| g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] | |
| d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
| d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() | |
| d_weight = d_weight * self.discriminator_weight | |
| return d_weight | |
| def forward(self, codebook_loss, loss_break, inputs, reconstructions, optimizer_idx, | |
| global_step, last_layer=None, cond=None, split="train"): | |
| # now the GAN part | |
| if optimizer_idx == 0: | |
| ### This code was previously outside this if statement, but seemed unnecessary? - Kevin | |
| rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous()) | |
| nll_loss = rec_loss.clone() | |
| if self.perceptual_weight > 0: | |
| p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous()) | |
| nll_loss = nll_loss + self.perceptual_weight * p_loss | |
| else: | |
| p_loss = torch.tensor([0.0]) | |
| nll_loss = torch.mean(nll_loss) | |
| ### | |
| # generator update | |
| if cond is None: | |
| assert not self.disc_conditional | |
| logits_fake = self.discriminator(reconstructions.contiguous()) | |
| else: | |
| assert self.disc_conditional | |
| logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1)) | |
| g_loss = non_saturate_gen_loss(logits_fake) | |
| if self.gen_loss_weight is None: | |
| try: | |
| d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) | |
| except RuntimeError: | |
| assert not self.training | |
| d_weight = torch.tensor(0.0) | |
| else: | |
| d_weight = torch.tensor(self.gen_loss_weight) | |
| disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) | |
| if not self.training: | |
| real_g_loss = disc_factor * g_loss | |
| g_loss = d_weight * disc_factor * g_loss | |
| scale_codebook_loss = self.codebook_weight * codebook_loss #entropy_loss | |
| if self.codebook_enlarge_ratio > 0: | |
| scale_codebook_loss = self.codebook_enlarge_ratio * (max(0, 1 - global_step / self.codebook_enlarge_steps)) * scale_codebook_loss + scale_codebook_loss | |
| loss = nll_loss + g_loss + scale_codebook_loss + loss_break.commitment * self.commit_weight | |
| if disc_factor == 0: | |
| log = {"{}/total_loss".format(split): loss.clone().detach(), | |
| "{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(), | |
| "{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(), | |
| "{}/commit_loss".format(split): loss_break.commitment.detach(), | |
| "{}/nll_loss".format(split): nll_loss.detach(), | |
| "{}/reconstruct_loss".format(split): rec_loss.detach().mean(), | |
| "{}/perceptual_loss".format(split): p_loss.detach().mean(), | |
| "{}/d_weight".format(split): torch.tensor(0.0), | |
| "{}/disc_factor".format(split): torch.tensor(0.0), | |
| "{}/g_loss".format(split): torch.tensor(0.0), | |
| } | |
| else: | |
| if self.training: | |
| log = {"{}/total_loss".format(split): loss.clone().detach(), | |
| "{}/per_sample_entropy".format(split): loss_break.per_sample_entropy.detach(), | |
| "{}/codebook_entropy".format(split): loss_break.codebook_entropy.detach(), | |
| "{}/commit_loss".format(split): loss_break.commitment.detach(), | |
| "{}/entropy_loss".format(split): codebook_loss.detach(), | |
| "{}/nll_loss".format(split): nll_loss.detach(), | |
| "{}/reconstruct_loss".format(split): rec_loss.detach().mean(), | |
| "{}/perceptual_loss".format(split): p_loss.detach().mean(), | |
| "{}/d_weight".format(split): d_weight, | |
| "{}/disc_factor".format(split): torch.tensor(disc_factor), | |
| "{}/g_loss".format(split): g_loss.detach(), | |
| } | |
| else: | |
| # validation only monitor the reconstruct_loss and p_loss | |
| log = { | |
| "{}/reconstruct_loss".format(split): rec_loss.detach().mean(), | |
| "{}/perceptual_loss".format(split): p_loss.detach().mean(), | |
| "{}/g_loss".format(split): real_g_loss.detach(), | |
| } | |
| return loss, log | |
| if optimizer_idx == 1: | |
| # second pass for discriminator update | |
| if cond is None: | |
| logits_real = self.discriminator(inputs.contiguous().detach()) | |
| logits_fake = self.discriminator(reconstructions.contiguous().detach()) | |
| else: | |
| logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1)) | |
| logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1)) | |
| disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start) | |
| #--------------------------------------------------------------------------------------- | |
| # Non-Saturate Loss is the Format of GAN Training, for D Loss, We still adopt Hinge Loss | |
| #--------------------------------------------------------------------------------------- | |
| if self.lecam_loss_weight is not None: | |
| self.lecam_ema.update(logits_real, logits_fake) | |
| lecam_loss = lecam_reg(logits_real, logits_fake, self.lecam_ema) | |
| non_saturate_d_loss = self.disc_loss(logits_real, logits_fake) | |
| d_loss = disc_factor * (lecam_loss * self.lecam_loss_weight + non_saturate_d_loss) | |
| else: | |
| non_saturate_d_loss = self.disc_loss(logits_real, logits_fake) | |
| d_loss = disc_factor * non_saturate_d_loss | |
| # d_loss = disc_factor * | |
| if disc_factor == 0: | |
| log = {"{}/disc_loss".format(split): torch.tensor(0.0), | |
| "{}/logits_real".format(split): torch.tensor(0.0), | |
| "{}/logits_fake".format(split): torch.tensor(0.0), | |
| "{}/disc_factor".format(split): torch.tensor(disc_factor), | |
| "{}/lecam_loss".format(split): lecam_loss.detach(), | |
| "{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(), | |
| } | |
| else: | |
| log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), | |
| "{}/logits_real".format(split): logits_real.detach().mean(), | |
| "{}/logits_fake".format(split): logits_fake.detach().mean(), | |
| "{}/disc_factor".format(split): torch.tensor(disc_factor), | |
| "{}/lecam_loss".format(split): lecam_loss.detach(), | |
| "{}/non_saturated_d_loss".format(split): non_saturate_d_loss.detach(), | |
| } | |
| return d_loss, log | |