hma / genie /st_mar.py
LeroyWaa's picture
draft
246c106
raw
history blame
24.9 kB
#https://github.com/LTH14/mar/tree/main/
from functools import partial
import numpy as np
from tqdm import tqdm
import scipy.stats as stats
import math
import torch
import torch.nn as nn
from einops import rearrange
import mup
from genie.config import DiffusionGenieConfig
from .diffloss import DiffLoss
from .st_mask_git import STMaskGIT
from transformers.utils import ModelOutput
def mask_by_order(mask_len, order, bsz, seq_len):
masking = torch.zeros(bsz, seq_len).cuda()
masking = torch.scatter(masking, dim=-1, index=order[:, :mask_len.long()], src=torch.ones(bsz, seq_len).cuda()).bool()
return masking
class FixedMuReadout(mup.MuReadout):
def forward(self, x):
"""
Using `return super(mup.MuReadout, self).forward(self.output_mult * x / self.width_mult())` with `torch.compile`
results in two divisions by `self.width_mult()` for some reason
"""
# return F.linear(self.output_mult * x / self.width_mult(), self.weight, self.bias) # equivalent
return nn.Linear.forward(self, self.output_mult * x / self.width_mult())
class STMAR(STMaskGIT):
""" Spatial-Time MAR with VisionTransformer backbone
"""
def __init__(self, config: DiffusionGenieConfig):
self.diffloss_w = config.diffloss_w
self.diffloss_d = config.diffloss_d
self.num_sampling_steps = config.num_sampling_steps
self.grad_checkpointing = config.grad_checkpointing
# --------------------------------------------------------------------------
# VAE and patchify specifics
self.patch_size = config.patch_size
self.vae_stride = config.vae_stride
self.buffer_size = config.buffer_size
self.vae_embed_dim = config.vae_embed_dim
self.maskgit_steps = config.maskgit_steps
super().__init__(config)
# --------------------------------------------------------------------------
self.mask_token = nn.Parameter(torch.zeros(1, 1, self.vae_embed_dim))
self.token_embed = nn.Linear(config.vae_embed_dim * self.config.patch_size ** 2, config.d_model, bias=False) # hard coded
cls = FixedMuReadout if config.use_mup else nn.Linear # (Fixed)MuReadout might slow dow down compiled training?
self.out_x_proj = cls(config.d_model, config.d_model)
self.decoder_norm = nn.LayerNorm(config.d_model, eps=1e-6)
self.z_proj_ln = nn.LayerNorm(config.d_model, eps=1e-6)
self.seq_len = config.S // (self.config.patch_size ** 2)
self.diffusion_pos_embed_learned = nn.Parameter(torch.zeros(1, self.seq_len * config.T, config.d_model))
# --------------------------------------------------------------------------
# Diffusion Loss
self.diffloss = DiffLoss(
target_channels=config.vae_embed_dim * self.config.patch_size ** 2,
z_channels=config.d_model,
width=config.diffloss_w,
depth=config.diffloss_d,
num_sampling_steps=config.num_sampling_steps,
grad_checkpointing=config.grad_checkpointing
)
# print(self.config.init_actions, self.config.use_actions, self.config.action_domains is not None)
self.diffusion_batch_mul = config.diffusion_batch_mul
self.initialize_weights()
def init_action_projectors(
self,
domains: list[str],
d_actions: list[int],
action_stats: list[list[list[float]]],
action_network: str = "mlp",
):
super().init_action_projectors(domains, d_actions, action_stats, action_network, use_diffusion=True)
self.action_diff_losses = nn.ModuleDict()
# action heads are heterogeneous
for domain, d_action in zip(self.config.action_domains, self.config.d_actions):
self.action_diff_losses[domain] = DiffLoss(
target_channels=d_action,
z_channels=self.config.d_model,
width=self.diffloss_w,
depth=self.diffloss_d,
num_sampling_steps=self.num_sampling_steps,
grad_checkpointing=self.grad_checkpointing
)
def initialize_weights(self):
# initialize nn.Linear and nn.LayerNorm parameters
torch.nn.init.normal_(self.diffusion_pos_embed_learned, std=.02)
self.init_weights()
def set_mup_shapes(self, rescale_params=False):
base_config = self.config.shallow_copy()
base_config.num_heads = 8
base_config.d_model = 256 # currently hardcoding to this shape
base_model = STMAR(base_config)
if hasattr(self, "action_preprocessor"):
for base_layer, layer in zip(base_model.decoder.layers, self.decoder.layers):
base_layer.action_projectors = layer.action_projectors
base_model.action_preprocessor = self.action_preprocessor
mup.set_base_shapes(self, base_model, rescale_params=rescale_params)
def compute_action_loss_and_acc(self, z, target, domain, mask = None):
bsz, seq_len, *_ = target.shape
# not so sure if this repeated is needed
target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
if mask is not None:
mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
loss = self.action_diff_losses[domain[0]](z=z, target=target, mask=mask) #
acc = torch.zeros_like(loss)
return loss, acc
def compute_video_loss_and_acc(self, z, target, mask = None):
z = rearrange(z, "B C T H W -> B (T H W) C").float()
target = rearrange(target, "B T H W C -> B (T H W) C").float()
bsz, seq_len, *_ = target.shape
target = target.reshape(bsz * seq_len, -1).repeat(self.diffusion_batch_mul, 1)
z = z.reshape(bsz*seq_len, -1).repeat(self.diffusion_batch_mul, 1)
if mask is not None:
mask = mask.reshape(bsz*seq_len).repeat(self.diffusion_batch_mul)
loss = self.diffloss(z=z, target=target, mask=mask) # no need for
acc = torch.zeros_like(loss)
return loss, acc
def compute_latents(self, x_THW, action_ids: torch.Tensor = None, domain=None, action_mask=None, **kwargs):
# x_THW is for z0,...,zT while x_targets is z1,...,zT
pos_embed_TSC = self.pos_embed_TSC
diffusion_pos_embed_learned = self.diffusion_pos_embed_learned
b, t, h, w, c = x_THW.shape
x_TSC = rearrange(x_THW, "B T H W C -> B T (H W) C").float()
x_TSC = self.token_embed(x_TSC)
T = x_TSC.shape[1]
if action_ids is not None:
# currently, action_preprocessor just normalizes the actions
skip_normalization = kwargs.get("skip_normalization", False)
if not skip_normalization:
action_ids = self.action_preprocessor[domain[0]](action_ids)
action_ids = self.action_mlp[domain[0]](action_ids) # [B, T, D]
if "concat" in self.config.action_network:
# randomly dropped the conditioning
if self.config.action_network == "resampler_concat":
action_condition = self.action_projectors[domain[0]](action_ids[:, :T])
else:
action_condition = action_ids[:, :T, None].repeat(1, 1, self.config.action_token_size, 1) # [B, T, S, C]
# we add masked tokens between 0 (fully unmasked as in video pred) and 1 (fully masked as in policies) for training losses
# if we have actions and are trying to predict actions
# if self.config.jointly_predict_actions and action_mask is not None:
# action_condition = action_mask * self.action_mask_tokens[:, :T] + (1 - action_mask) * action_condition
x_TSC = torch.concat((x_TSC, action_condition), dim=2) # [B, T, S, C]
elif self.config.jointly_predict_actions:
# all masked when predicting actions and there is no input actions
action_condition = self.action_mask_tokens[:, :T].repeat(1, 1, self.config.action_token_size, 1)
x_TSC = torch.concat((x_TSC, action_condition), dim=2) # [B, T, S, C]
x_TSC = self.z_proj_ln(x_TSC + pos_embed_TSC[:, :x_TSC.shape[1], :x_TSC.shape[2]])
# additive position embeddings, using the same vocab space
domain = domain[0] if domain is not None else None
x_TSC = self.decoder(x_TSC, action_ids=action_ids, domain=domain)
# dummy if are not used
decoded_states = rearrange(diffusion_pos_embed_learned, "B (T H W) C -> B C T H W", T=self.config.T, H=h, W=w)
decoded_actions = None
if self.config.jointly_predict_actions:
decoded_actions = x_TSC[:, :, -self.config.action_token_size:].mean(dim=2) # pool all tokens
# if self.config.jointly_predict_states:
x_TSC = x_TSC[:, :, :h*w] # remove action tokens
x_next_TSC = self.decoder_norm(self.out_x_proj(x_TSC))
x_next_TSC = x_next_TSC + diffusion_pos_embed_learned.view(1, self.config.T, h*w, self.config.d_model)[:,:T]
decoded_states = rearrange(x_next_TSC, "B T (H W) C -> B C T H W", H=h, W=w)
return decoded_states, decoded_actions
def patchify(self, x):
bsz, t, h, w, c = x.shape
p = self.patch_size
h_, w_ = h // p, w // p
x = x.reshape(bsz, t, h_, p, w_, p, c)
x = torch.einsum('nthpwqc->nthwpqc', x)
x = x.reshape(bsz, t, h_, w_, c * p ** 2)
return x
def unpatchify(self, x):
# input: B T H W C
p = self.patch_size
bsz, t, h, w, _ = x.shape
c = self.vae_embed_dim
x = x.reshape(bsz, t, h, w, p, p, c)
x = torch.einsum('nthwpqc->nthpwqc', x)
x = x.reshape(bsz, t, h * p, w * p, c)
return x
def forward(self, input_ids, labels, action_ids=None, domain="default", **kwargs):
assert "masked_tokens_indicator" in kwargs
relevant_mask = kwargs["masked_tokens_indicator"]
# class embed
T, H, W = self.config.T, self.h, self.w
if "h" in kwargs:
H = kwargs["h"][0]
if "w" in kwargs:
W = kwargs["w"][0]
x_THW = rearrange(input_ids, "B (T H W) C -> B T H W C", T=T, H=H, W=W)
action_mask = None
if action_ids is not None and self.config.jointly_predict_actions:
action_labels = action_ids.clone()
action_mask = torch.zeros(len(action_ids), T, 1)
random_timesteps = torch.randint(0, T, (len(action_ids), 1), device=action_ids.device)
# Set all timesteps from the sampled t to T to 1
for i, t in enumerate(random_timesteps):
action_mask[i, t:] = 1
# Move the mask to the same device and dtype as x_THW if needed
action_mask = action_mask.unsqueeze(-1).cuda().to(x_THW.dtype)
# change masked token id -> masked token latents
x_THW[relevant_mask] = self.mask_token
x_THW = self.patchify(x_THW)
latents_CTHW, action_outputs = self.compute_latents(x_THW, action_ids=action_ids, domain=domain, action_mask=action_mask, **kwargs)
labels = rearrange(labels, "B (T H W) C -> B T H W C", T=T, H=H, W=W)
labels = self.patchify(labels)
relevant_loss = torch.zeros(1).to(x_THW.device)
relevant_acc = torch.zeros(1).to(x_THW.device)
relevant_mask = self.patchify(relevant_mask[...,None]).sum(-1) > 0 # as long as it's not no mask
# Record the loss over masked tokens only to make it more comparable to LLM baselines
if self.config.jointly_predict_states:
# could also get mask of corrupted tokens by uncommenting line in `get_maskgit_collator`
relevant_loss, relevant_acc = self.compute_video_loss_and_acc(latents_CTHW, labels, relevant_mask) # relevant_mask
# compute the action losses
if action_outputs is not None:
action_loss, _ = self.compute_action_loss_and_acc(action_outputs, action_labels, domain, action_mask)
return ModelOutput(loss=relevant_loss, acc=relevant_acc, logits=latents_CTHW, action_loss=action_loss, actions=action_outputs)
return ModelOutput(loss=relevant_loss, acc=relevant_acc, logits=latents_CTHW)
def generate(
self,
input_ids: torch.LongTensor,
attention_mask: torch.LongTensor,
max_new_tokens: int,
min_new_tokens: int = None,
return_logits: int = False,
return_with_actions: bool = False,
temperature: float = 1.0,
action_ids: torch.Tensor = None,
domain: str = "default",
action_only: bool = False,
state_only: bool = False,
**kwargs
) -> tuple[torch.LongTensor, torch.FloatTensor]:
"""
Args designed to match the format of Llama.
We ignore `attention_mask`, and use `max_new_tokens` to determine the number of frames to generate.
Returns: `(sample_THW, factored_logits)` if `return_logits` else `sample_THW`
sample_THW: size (B, num_new_frames * H * W) corresponding to autoregressively generated
unfactorized token ids for future frames.
Optionally, factored_logits: size (B, factored_vocab_size, num_factored_vocabs, num_new_frames, H, W).
"""
assert min_new_tokens in (None, max_new_tokens), \
"Expecting `min_new_tokens`, if specified, to match `max_new_tokens`."
# assert max_new_tokens % self.config.S == 0, "Expecting `max_new_tokens` to be a multiple of `self.config.S`."
h, w, c = self.h, self.w, self.vae_embed_dim
if "h" in kwargs:
h = kwargs["h"][0]
if "w" in kwargs:
w = kwargs["w"][0]
S = h*w
num_new_frames = max_new_tokens // S
inputs_THW = rearrange(input_ids.clone(), "b (t h w) c-> b t h w c", h=h, w=w)
inputs_masked_THW = torch.cat([
inputs_THW,
self.mask_token[None, None].repeat(inputs_THW.size(0), num_new_frames, h, w, 1)
], dim=1)
all_factored_logits = []
for timestep in range(inputs_THW.size(1), inputs_THW.size(1) + num_new_frames):
# could change sampling hparams
sample_HW, factored_logits, actions = self.maskgit_generate(
inputs_masked_THW,
timestep,
maskgit_steps=self.maskgit_steps,
temperature=temperature,
action_ids=action_ids,
domain=domain,
action_only=action_only,
state_only=state_only,
**kwargs
)
inputs_masked_THW[:, timestep] = sample_HW
all_factored_logits.append(factored_logits)
predicted_tokens = rearrange(inputs_masked_THW, "B T H W C -> B (T H W) C")
if return_with_actions:
# unnormalize actions
actions = self.action_preprocessor[domain[0]].unnormalize(actions)
return predicted_tokens, actions
elif return_logits:
return predicted_tokens, torch.stack(all_factored_logits, dim=3) # (b, c, num_new_frames, h, w)
else:
return predicted_tokens
def sample_orders(self, bsz):
# generate a batch of random generation orders
orders = []
for _ in range(bsz):
order = np.array(list(range(self.seq_len)))
np.random.shuffle(order)
orders.append(order)
orders = torch.Tensor(np.array(orders)).cuda().long()
return orders
@torch.no_grad()
def maskgit_generate(
self,
prompt_THW,
out_t: int,
unmask_mode: str = "random",
action_ids=None,
domain="default",
maskgit_steps=8,
cfg=1.0,
temperature=1.0,
cfg_schedule="linear",
action_only: bool = False,
state_only: bool = False,
**kwargs
) -> tuple[torch.LongTensor, torch.FloatTensor]:
# init and sample generation orders
assert out_t, "maskgit_generate requires out_t > 0"
prompt_THW = self.patchify(prompt_THW)
bs, t, h, w = prompt_THW.size(0), prompt_THW.size(1), prompt_THW.size(2), prompt_THW.size(3)
S = h * w
orders = self.sample_orders(bs) # random order
sampled_action_token_latent = None
# this will be modified in place on each iteration of this loop
unmasked = self.init_mask(prompt_THW)
# patchify the prompt
latents_CTHW, action_outputs = self.compute_latents(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
latents_CHW = latents_CTHW[:, :, out_t]
orig_latents_CHW = latents_CHW.clone()
# Return these original logits, not logits after partially sampling.
for step in range(maskgit_steps):
# Perform a single maskgit step (cosine schedule), updating unmasked in-place
if step > 0: # recompute logits with updated prompt
latents_CHW, action_outputs = self.compute_latents(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
latents_CHW = latents_CHW[:, :, out_t]
# mask ratio for the next round, following MaskGIT and MAGE.
mask_ratio = np.cos(math.pi / 2. * (step + 1) / maskgit_steps)
mask_len = torch.Tensor([np.floor(self.seq_len * mask_ratio)]).cuda()
# masks out at least one for the next iteration
mask_len = torch.maximum(torch.Tensor([1]).cuda(),
torch.minimum(torch.sum(~unmasked, dim=-1, keepdims=True) - 1, mask_len))
# get masking for next iteration and locations to be predicted in this iteration
mask_next = mask_by_order(mask_len[0], orders, bs, self.seq_len)
mask = ~unmasked
if step >= maskgit_steps - 1:
mask_to_pred = mask[:bs].bool() # last step
else:
mask_to_pred = torch.logical_xor(mask[:bs].bool(), mask_next.bool())
mask = mask_next
if not cfg == 1.0:
mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)
# sample token latents for this step
latents_CHW = rearrange(latents_CHW, "b c h w -> b (h w) c")
latents_CHW = latents_CHW[mask_to_pred.nonzero(as_tuple=True)]
# copy previously unmasked values from prompt input into sample
# cfg schedule follow Muse
total_mask_len = unmasked.shape[1]
if cfg_schedule == "linear":
cfg_iter = 1 + (cfg - 1) * (total_mask_len - unmasked.sum()) / total_mask_len
elif cfg_schedule == "constant":
cfg_iter = cfg
else:
raise NotImplementedError
# need to reshape back
sampled_token_latent = self.diffloss.sample(latents_CHW.contiguous(), temperature, cfg_iter, clip_denoised=True)
if not cfg == 1.0:
sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) # Remove null class samples
mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)
if action_outputs is not None and self.config.jointly_predict_actions:
sampled_action_token_latent = self.action_diff_losses[domain[0]].sample(action_outputs.view(-1, action_outputs.shape[-1]),
temperature, cfg_iter, clip_denoised=True)
if not cfg == 1.0:
sampled_action_token_latent, _ = sampled_action_token_latent.chunk(2, dim=0)
prompt_THW_reshape = rearrange(prompt_THW, "B T H W C -> B T (H W) C")
prompt_THW_reshape[:, out_t][mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
prompt_THW = rearrange(prompt_THW_reshape, "B T (H W) C -> B T H W C", H=h, W=w)
# Return the final sample and logits
prompt_THW = self.unpatchify(prompt_THW)
return prompt_THW[:, out_t], orig_latents_CHW, sampled_action_token_latent
@torch.no_grad()
def maskgit_generate_horizon(
self,
prompt_THW,
out_t_min: int,
out_t_max: int,
unmask_mode: str = "random",
action_ids=None,
domain="default",
maskgit_steps=8,
cfg=1.0,
temperature=1.0,
cfg_schedule="linear",
**kwargs
) -> tuple[torch.LongTensor, torch.FloatTensor]:
# init and sample generation orders
prompt_THW = self.patchify(prompt_THW)
bs, t, h, w = prompt_THW.size(0), prompt_THW.size(1), prompt_THW.size(2), prompt_THW.size(3)
S = h * w
orders = self.sample_orders(bs) # random order
# this will be modified in place on each iteration of this loop
horizon = out_t_max - out_t_min
unmasked = self.init_mask(prompt_THW, t=horizon)
# patchify the prompt
latents_CTHW, latents_actions = self.compute_latents(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
latents_CHW = latents_CTHW[:, :, out_t_min:out_t_max]
orig_latents_CHW = latents_CHW.clone()
# Return these original logits, not logits after partially sampling.
seq_len = horizon * self.seq_len
for step in (range(maskgit_steps)):
# Perform a single maskgit step (cosine schedule), updating unmasked in-place
if step > 0: # recompute logits with updated prompt
latents_CHW, latents_actions = self.compute_latents(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
latents_CHW = latents_CHW[:, :, out_t_min:out_t_max]
# mask ratio for the next round, following MaskGIT and MAGE.
mask_ratio = np.cos(math.pi / 2. * (step + 1) / maskgit_steps)
mask_len = torch.Tensor([np.floor(seq_len * mask_ratio)]).cuda()
# masks out at least one for the next iteration
mask_len = torch.maximum(torch.Tensor([1]).cuda(),
torch.minimum(torch.sum(~unmasked, dim=-1, keepdims=True) - 1, mask_len))
# get masking for next iteration and locations to be predicted in this iteration
mask_next = mask_by_order(mask_len[0], orders, bs, seq_len)
mask = ~unmasked
if step >= maskgit_steps - 1:
mask_to_pred = mask[:bs].bool() # last step
else:
mask_to_pred = torch.logical_xor(mask[:bs].bool(), mask_next.bool())
mask = mask_next
if not cfg == 1.0:
mask_to_pred = torch.cat([mask_to_pred, mask_to_pred], dim=0)
# sample token latents for this step
latents_CHW = rearrange(latents_CHW, "b c t h w -> b (t h w) c")
latents_CHW = latents_CHW[mask_to_pred.nonzero(as_tuple=True)]
# copy previously unmasked values from prompt input into sample
# cfg schedule follow Muse
total_mask_len = unmasked.shape[1]
if cfg_schedule == "linear":
cfg_iter = 1 + (cfg - 1) * (total_mask_len - unmasked.sum()) / total_mask_len
elif cfg_schedule == "constant":
cfg_iter = cfg
else:
raise NotImplementedError
# need to reshape back
sampled_token_latent = self.diffloss.sample(latents_CHW.contiguous(), temperature, cfg_iter)
if not cfg == 1.0:
sampled_token_latent, _ = sampled_token_latent.chunk(2, dim=0) # Remove null class samples
mask_to_pred, _ = mask_to_pred.chunk(2, dim=0)
if latents_actions is not None and self.config.jointly_predict_actions:
action_outputs = self.action_diff_losses[domain[0]].sample(latents_actions.view(-1, latents_actions.shape[-1]),
temperature, cfg_iter)
if not cfg == 1.0:
action_outputs, _ = action_outputs.chunk(2, dim=0)
# need to reshape backout_t_max - out_t_min_latent.chunk(2, dim=0)
prompt_THW_reshape = rearrange(prompt_THW[:, out_t_min:out_t_max], "B T H W C -> B (T H W) C")
prompt_THW_reshape[mask_to_pred.nonzero(as_tuple=True)] = sampled_token_latent
prompt_THW[:, out_t_min:out_t_max] = rearrange(prompt_THW_reshape.clone(), "B (T H W) C -> B T H W C", T=horizon, H=h, W=w)
# Return the final sample and logits
prompt_THW = self.unpatchify(prompt_THW)
return prompt_THW[:, out_t_min:out_t_max], orig_latents_CHW, action_outputs