LeroyWaa's picture
add gensim code
8fc2b4e
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class DotAttn(nn.Module):
""" Dot-Attention """
def forward(self, inp, h):
score = self.softmax(inp, h)
return score.expand_as(inp).mul(inp).sum(1), score
def softmax(self, inp, h):
raw_score = inp.bmm(h.unsqueeze(2))
score = F.softmax(raw_score, dim=1)
return score
class ScaledDotAttn(nn.Module):
""" Scaled Dot-Attention """
def forward(self, inp, h):
score = self.softmax(inp, h)
return score.expand_as(inp).mul(inp).sum(1), score
def softmax(self, inp, h):
raw_score = inp.bmm(h.unsqueeze(2)) / np.sqrt(h.shape[-1])
score = F.softmax(raw_score, dim=1)
return score
class Fusion(nn.Module):
""" Base Fusion Class"""
def __init__(self, input_dim=3):
super().__init__()
self.input_dim = input_dim
def tile_x2(self, x1, x2, x2_proj=None):
if x2_proj:
x2 = x2_proj(x2)
x2 = x2.unsqueeze(-1).unsqueeze(-1)
x2 = x2.repeat(x1.shape[0], 1, x1.shape[-2], x1.shape[-1])
return x2
def batch_tile_x2(self, x1, x2, x2_proj=None):
if x2_proj:
x2 = x2_proj(x2)
x2 = x2.unsqueeze(-1).unsqueeze(-1)
x2 = x2.repeat(1, 1, x1.shape[-2], x1.shape[-1])
return x2
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
raise NotImplementedError()
class FusionAdd(Fusion):
""" x1 + x2 """
def __init__(self, input_dim=3):
super(FusionAdd, self).__init__(input_dim=input_dim)
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
if x1.shape != x2.shape and len(x1.shape) != len(x2.shape):
x2 = self.tile_x2(x1, x2, x2_proj)
return x1 + x2
class FusionMult(Fusion):
""" x1 * x2 """
def __init__(self, input_dim=3):
super(FusionMult, self).__init__(input_dim=input_dim)
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
if x1.shape != x2.shape and len(x1.shape) != len(x2.shape):
x2 = self.batch_tile_x2(x1, x2, x2_proj) # self.batch_tile_x2(x1, x2, x2_proj)
return x1 * x2
class FusionMax(Fusion):
""" max(x1, x2) """
def __init__(self, input_dim=3):
super(FusionMax, self).__init__(input_dim=input_dim)
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
if x1.shape != x2.shape and len(x1.shape) != len(x2.shape):
x2 = self.tile_x2(x1, x2, x2_proj)
return torch.max(x1, x2)
class FusionConcat(Fusion):
""" [x1; x2] """
def __init__(self, input_dim=3):
super(FusionConcat, self).__init__(input_dim=input_dim)
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
if x1.shape != x2.shape and len(x1.shape) != len(x2.shape):
x2 = self.tile_x2(x1, x2, x2_proj)
return torch.cat([x1, x2], dim=1)
class FusionConv(Fusion):
""" 1x1 convs after [x1; x2] """
def __init__(self, input_dim=3):
super(FusionConv, self).__init__(input_dim=input_dim)
self.conv = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(input_dim * 2, input_dim, kernel_size=1, bias=False)
)
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
if x1.shape != x2.shape and len(x1.shape) != len(x2.shape):
x2 = self.tile_x2(x1, x2, x2_proj)
x = torch.cat([x1, x2], dim=1) # [B, 2C, H, W]
x = self.conv(x) # [B, C, H, W]
return x
class FusionConvLat(Fusion):
""" 1x1 convs after [x1; x2] for lateral fusion """
def __init__(self, input_dim=3, output_dim=3):
super(FusionConvLat, self).__init__(input_dim=input_dim)
self.conv = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(input_dim, output_dim, kernel_size=1, bias=False)
)
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
if x1.shape != x2.shape and len(x1.shape) != len(x2.shape):
x2 = self.tile_x2(x1, x2, x2_proj)
x = torch.cat([x1, x2], dim=1) # [B, input_dim, H, W]
x = self.conv(x) # [B, output_dim, H, W]
return x
## ------------- NOTE ----------------
## The following are various fusion types I experimented with.
## Most of them didn't work well ¯\_(ツ)_/¯
## But it doesn't mean there isn't a better way of
## doing lateral and multi-modal (language+vision) fusion.
class FusionFiLM(Fusion):
""" FiLM (Perez et. al, https://arxiv.org/abs/1709.07871).
Note: This is not used inside a Residual block before ReLU.
I had a version this in UpBlock with FiLM, which didn't seem to work at all.
"""
def __init__(self, input_dim=3, output_dim=3):
super(FusionFiLM, self).__init__(input_dim=input_dim)
def forward(self, x1, x2, gamma, beta):
g = self.tile_x2(x1, x2, gamma)
b = self.tile_x2(x1, x2, beta)
return x1 * g + b
class FusionDeepConv(Fusion):
""" Multi-Layer 1x1 convs after [x1; x2] """
def __init__(self, input_dim=3):
super(FusionDeepConv, self).__init__(input_dim=input_dim)
self.conv = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(input_dim * 2, input_dim, kernel_size=1, bias=False),
nn.ReLU(True),
nn.Conv2d(input_dim, input_dim, kernel_size=1, bias=False),
nn.ReLU(True),
nn.Conv2d(input_dim, input_dim, kernel_size=1, bias=False),
)
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
if x1.shape != x2.shape and len(x1.shape) != len(x2.shape):
x2 = self.tile_x2(x1, x2, x2_proj)
x = torch.cat([x1, x2], dim=1) # [B, 2C, H, W]
x = self.conv(x) # [B, C, H, W]
return x
class FusionMultWord(nn.Module):
""" Product with weighted-sum of words """
def __init__(self, input_dim=3):
super().__init__()
self.input_dim = input_dim
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
B, D, H, W = x1.shape
x2_len = int(x2_mask.count_nonzero())
weighted_x1 = torch.zeros_like(x1)
for t in range(x2_len):
x2_t = x2_proj(x2[:,t]) if x2_proj else x2[:,t]
x2_t = x2_t.unsqueeze(-1).unsqueeze(-1).repeat(B, 1, H, W)
weighted_x1 += x1 * x2_t
weighted_x1 /= x2_len
return weighted_x1
class FusionWordAttention(nn.Module):
""" Word Attention """
def __init__(self, input_dim=3):
super().__init__()
self.input_dim = input_dim
self.dot_attn = DotAttn()
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
B, D, H, W = x1.shape
x1_flat = x1.reshape(B, D, H*W)
x2_len = int(x2_mask.count_nonzero())
# TODO: batch this unrolling?
weight_sum_x1_flat = torch.zeros_like(x1_flat)
for t in range(x2_len):
x2_t = x2_proj(x2[:,t]) if x2_proj else x2[:,t]
x2_t = x2_t.repeat(B, 1)
_, attn_x1 = self.dot_attn(x1_flat.transpose(1, 2), x2_t)
weight_sum_x1_flat += x1_flat * attn_x1.transpose(1, 2)
weight_sum_x1_flat /= x2_len
x2 = weight_sum_x1_flat.reshape(B, D, H, W)
return x2
class FusionSentenceAttention(nn.Module):
""" Sentence Attention """
def __init__(self, input_dim=3):
super().__init__()
self.input_dim = input_dim
self.dot_attn = ScaledDotAttn()
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
B, D, H, W = x1.shape
x1_flat = x1.reshape(B, D, H*W)
x2_t = x2_proj(x2) if x2_proj else x2
x2_t = x2_t.repeat(B, 1)
_, attn_x1 = self.dot_attn(x1_flat.transpose(1, 2), x2_t)
weight_sum_x1_flat = x1_flat * attn_x1.transpose(1, 2)
x2 = weight_sum_x1_flat.reshape(B, D, H, W)
return x2
class CrossModalAttention2d(nn.Module):
""" Cross-Modal Attention. Adapted from: https://github.com/openai/CLIP/blob/main/clip/model.py#L56 """
def __init__(self, spacial_dim=7, embed_dim=1024, num_heads=32,
output_dim=1024, lang_dim=512, lang_max_tokens=77):
super().__init__()
self.embed_dim = embed_dim
self.lang_dim = lang_dim
self.lang_max_tokens = lang_max_tokens
self.num_heads = num_heads
self.lang_proj = nn.Linear(self.lang_dim, embed_dim)
self.vision_positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2, embed_dim) / embed_dim ** 0.5)
self.lang_positional_embedding = nn.Parameter(torch.randn(lang_max_tokens, embed_dim) / embed_dim ** 0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
def forward(self, x, l, l_mask):
# reshape vision features
x_shape = x.shape
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
x = x + self.vision_positional_embedding[:x.shape[0], None, :].to(x.dtype) # (HW)NC
# project language
l = l.permute(1, 0, 2)
l_shape = l.shape
l = l.reshape(-1, self.lang_dim)
l = self.lang_proj(l)
l = l.reshape(l_shape[0], l_shape[1], self.embed_dim)
l = l + self.lang_positional_embedding[:, None, :].to(l.dtype)
# hard language mask
l_len = int(l_mask.count_nonzero())
l = l[:l_len]
l = l.repeat(1, x.shape[1], 1)
x, _ = F.multi_head_attention_forward(
query=x, key=l, value=l,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False
)
x = x.permute(1, 2, 0)
x = x.reshape(x_shape)
return x
class FusionMultiHeadedWordAttention(nn.Module):
""" Multi-Headed Word Attention that uses Cross Modal Attention at different scales """
def __init__(self, input_dim=3):
super().__init__()
self.input_dim = input_dim
self.attn1 = CrossModalAttention2d(spacial_dim=7, embed_dim=1024, output_dim=1024)
self.attn2 = CrossModalAttention2d(spacial_dim=14, embed_dim=512, output_dim=512)
self.attn3 = CrossModalAttention2d(spacial_dim=28, embed_dim=256, output_dim=256)
self.multi_headed_attns = {
1024: self.attn1,
512: self.attn2,
256: self.attn3,
}
def forward(self, x1, x2, x2_mask=None, x2_proj=None):
emb_dim = x1.shape[1]
x = self.multi_headed_attns[emb_dim](x1, x2, x2_mask)
return x
names = {
'add': FusionAdd,
'mult': FusionMult,
'mult_word': FusionMultWord,
'film': FusionFiLM,
'max': FusionMax,
'concat': FusionConcat,
'conv': FusionConv,
'deep_conv': FusionDeepConv,
'word_attn': FusionWordAttention,
'sent_attn': FusionSentenceAttention,
'multi_headed_word_attn': FusionMultiHeadedWordAttention,
}