Spaces:
Running
Running
import os | |
import sys | |
sys.path.append('./Musetalk') | |
import os | |
import time | |
import re | |
from huggingface_hub import snapshot_download | |
import requests | |
import numpy as np | |
import cv2 | |
import torch | |
import glob | |
import pickle | |
from tqdm import tqdm | |
import copy | |
from argparse import Namespace | |
import gdown | |
import imageio | |
import json | |
import shutil | |
import threading | |
import queue | |
from moviepy.editor import * | |
from musetalk.utils.utils import get_file_type,get_video_fps,datagen | |
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder,get_bbox_range | |
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending | |
from musetalk.utils.utils import load_all_model | |
import gradio as gr | |
# ProjectDir = os.path.abspath(os.path.dirname(__file__)) | |
CheckpointsDir = "Musetalk/Musetalk/models" | |
def download_model(): | |
if not os.path.exists(CheckpointsDir): | |
os.makedirs(CheckpointsDir) | |
print("Checkpoint Not Downloaded, start downloading...") | |
tic = time.time() | |
snapshot_download( | |
repo_id="TMElyralab/MuseTalk", | |
local_dir=CheckpointsDir, | |
max_workers=8, | |
local_dir_use_symlinks=True, | |
force_download=True, resume_download=False | |
) | |
# weight | |
os.makedirs(f"{CheckpointsDir}/sd-vae-ft-mse/") | |
snapshot_download( | |
repo_id="stabilityai/sd-vae-ft-mse", | |
local_dir=CheckpointsDir+'/sd-vae-ft-mse', | |
max_workers=8, | |
local_dir_use_symlinks=True, | |
force_download=True, resume_download=False | |
) | |
#dwpose | |
os.makedirs(f"{CheckpointsDir}/dwpose/") | |
snapshot_download( | |
repo_id="yzd-v/DWPose", | |
local_dir=CheckpointsDir+'/dwpose', | |
max_workers=8, | |
local_dir_use_symlinks=True, | |
force_download=True, resume_download=False | |
) | |
#vae | |
url = "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt" | |
response = requests.get(url) | |
# 确保请求成功 | |
if response.status_code == 200: | |
# 指定文件保存的位置 | |
file_path = f"{CheckpointsDir}/whisper/tiny.pt" | |
os.makedirs(f"{CheckpointsDir}/whisper/") | |
# 将文件内容写入指定位置 | |
with open(file_path, "wb") as f: | |
f.write(response.content) | |
else: | |
print(f"请求失败,状态码:{response.status_code}") | |
#gdown face parse | |
url = "https://drive.google.com/uc?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812" | |
os.makedirs(f"{CheckpointsDir}/face-parse-bisent/") | |
file_path = f"{CheckpointsDir}/face-parse-bisent/79999_iter.pth" | |
gdown.download(url, file_path, quiet=False) | |
#resnet | |
url = "https://download.pytorch.org/models/resnet18-5c106cde.pth" | |
response = requests.get(url) | |
# 确保请求成功 | |
if response.status_code == 200: | |
# 指定文件保存的位置 | |
file_path = f"{CheckpointsDir}/face-parse-bisent/resnet18-5c106cde.pth" | |
# 将文件内容写入指定位置 | |
with open(file_path, "wb") as f: | |
f.write(response.content) | |
else: | |
print(f"请求失败,状态码:{response.status_code}") | |
toc = time.time() | |
print(f"download cost {toc-tic} seconds") | |
print_directory_contents(CheckpointsDir) | |
else: | |
print("Already download the model.") | |
# download_model() # for huggingface deployment. | |
def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000): | |
cap = cv2.VideoCapture(vid_path) | |
count = 0 | |
while True: | |
if count > cut_frame: | |
break | |
ret, frame = cap.read() | |
if ret: | |
cv2.imwrite(f"{save_path}/{count:08d}.png", frame) | |
count += 1 | |
else: | |
break | |
def osmakedirs(path_list): | |
for path in path_list: | |
os.makedirs(path) if not os.path.exists(path) else None | |
class MuseTalk_RealTime: | |
def __init__(self): | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif torch.backends.mps.is_available(): | |
device = "mps" | |
else: | |
device = "cpu" | |
self.device = device | |
self.load = False | |
# self.avatar_info = { | |
# "avatar_id":avatar_id, | |
# "video_path":video_path, | |
# "bbox_shift":bbox_shift | |
# } | |
self.skip_save_images = False | |
self.avatar_id = None | |
self.avatar_path = None | |
self.full_imgs_path = None | |
self.coords_path = None | |
self.latents_out_path = None | |
self.video_out_path = None | |
self.mask_out_path = None | |
self.mask_coords_path = None | |
self.avatar_info_path = None | |
self.input_latent_list_cycle = None | |
self.mask_coords_list_cycle = None | |
self.mask_list_cycle = None | |
self.frame_list_cycle = None | |
def init_model(self): | |
# load model weights | |
self.audio_processor, self.vae, self.unet, self.pe = load_all_model() | |
self.timesteps = torch.tensor([0], device=self.device) | |
self.pe = self.pe.half() | |
self.vae.vae = self.vae.vae.half() | |
self.unet.model = self.unet.model.half() | |
self.load = True | |
def process_frames(self, | |
res_frame_queue, | |
video_len): | |
print(video_len) | |
while True: | |
if self.idx>=video_len-1: | |
break | |
try: | |
start = time.time() | |
res_frame = res_frame_queue.get(block=True, timeout=1) | |
except queue.Empty: | |
continue | |
bbox = self.coord_list_cycle[self.idx%(len(self.coord_list_cycle))] | |
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx%(len(self.frame_list_cycle))]) | |
x1, y1, x2, y2 = bbox | |
try: | |
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) | |
except: | |
continue | |
mask = self.mask_list_cycle[self.idx%(len(self.mask_list_cycle))] | |
mask_crop_box = self.mask_coords_list_cycle[self.idx%(len(self.mask_coords_list_cycle))] | |
#combine_frame = get_image(ori_frame,res_frame,bbox) | |
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box) | |
if self.skip_save_images is False: | |
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png",combine_frame) | |
self.idx = self.idx + 1 | |
def prepare_material(self, video_path, bbox_shift, progress=gr.Progress(track_tqdm=True)): | |
self.video_path = video_path | |
self.bbox_shift = bbox_shift | |
self.avatar_id = os.path.basename(video_path).split(".")[0] | |
self.avatar_path = f"./results/avatars/{self.avatar_id}" | |
self.full_imgs_path = f"{self.avatar_path}/full_imgs" | |
self.coords_path = f"{self.avatar_path}/coords.pkl" | |
self.latents_out_path= f"{self.avatar_path}/latents.pt" | |
self.video_out_path = f"{self.avatar_path}/vid_output/" | |
self.mask_out_path =f"{self.avatar_path}/mask" | |
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl" | |
self.avatar_info_path = f"{self.avatar_path}/avator_info.json" | |
# 若存在先删除 | |
if os.path.exists(self.full_imgs_path): | |
shutil.rmtree(self.full_imgs_path) | |
shutil.rmtree(self.mask_out_path) | |
shutil.rmtree(self.video_out_path) | |
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) | |
print("preparing data materials ... ...") | |
progress(0, desc = "preparing data materials ...") | |
if os.path.isfile(video_path): | |
video2imgs(video_path, self.full_imgs_path, ext = 'png') | |
else: | |
print(f"copy files in {video_path}") | |
files = os.listdir(video_path) | |
files.sort() | |
files = [file for file in files if file.split(".")[-1]=="png"] | |
for filename in files: | |
shutil.copyfile(f"{video_path}/{filename}", f"{self.full_imgs_path}/{filename}") | |
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))) | |
# bbox_shift_text = get_bbox_range(input_img_list, self.bbox_shift) | |
progress(0, desc = "extracting landmarks...") | |
print("extracting landmarks ...") | |
coord_list, frame_list, bbox_shift_text = get_landmark_and_bbox(input_img_list, bbox_shift) | |
input_latent_list = [] | |
idx = -1 | |
# maker if the bbox is not sufficient | |
coord_placeholder = (0.0,0.0,0.0,0.0) | |
for bbox, frame in zip(coord_list, frame_list): | |
idx = idx + 1 | |
if bbox == coord_placeholder: | |
continue | |
x1, y1, x2, y2 = bbox | |
crop_frame = frame[y1:y2, x1:x2] | |
resized_crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) | |
latents = self.vae.get_latents_for_unet(resized_crop_frame) | |
input_latent_list.append(latents) | |
self.frame_list_cycle = frame_list + frame_list[::-1] | |
self.coord_list_cycle = coord_list + coord_list[::-1] | |
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1] | |
self.mask_coords_list_cycle = [] | |
self.mask_list_cycle = [] | |
progress(0, desc = "saving masks...") | |
for i,frame in enumerate(tqdm(self.frame_list_cycle)): | |
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png",frame) | |
face_box = self.coord_list_cycle[i] | |
mask,crop_box = get_image_prepare_material(frame,face_box) | |
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png",mask) | |
self.mask_coords_list_cycle += [crop_box] | |
self.mask_list_cycle.append(mask) | |
with open(self.mask_coords_path, 'wb') as f: | |
pickle.dump(self.mask_coords_list_cycle, f) | |
with open(self.coords_path, 'wb') as f: | |
pickle.dump(self.coord_list_cycle, f) | |
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path)) | |
return video_path, bbox_shift_text | |
def prepare_material_(self): | |
print("preparing data materials ... ...") | |
# with open(self.avatar_info_path, "w") as f: | |
# json.dump(self.avatar_info, f) | |
if os.path.isfile(self.video_path): | |
video2imgs(self.video_path, self.full_imgs_path, ext = 'png') | |
else: | |
print(f"copy files in {self.video_path}") | |
files = os.listdir(self.video_path) | |
files.sort() | |
files = [file for file in files if file.split(".")[-1]=="png"] | |
for filename in files: | |
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}") | |
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))) | |
bbox_shift_text = get_bbox_range(input_img_list, self.bbox_shift) | |
print("extracting landmarks...") | |
coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift) | |
input_latent_list = [] | |
idx = -1 | |
# maker if the bbox is not sufficient | |
coord_placeholder = (0.0,0.0,0.0,0.0) | |
for bbox, frame in zip(coord_list, frame_list): | |
idx = idx + 1 | |
if bbox == coord_placeholder: | |
continue | |
x1, y1, x2, y2 = bbox | |
crop_frame = frame[y1:y2, x1:x2] | |
resized_crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) | |
latents = self.vae.get_latents_for_unet(resized_crop_frame) | |
input_latent_list.append(latents) | |
self.frame_list_cycle = frame_list + frame_list[::-1] | |
self.coord_list_cycle = coord_list + coord_list[::-1] | |
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1] | |
self.mask_coords_list_cycle = [] | |
self.mask_list_cycle = [] | |
for i,frame in enumerate(tqdm(self.frame_list_cycle)): | |
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png",frame) | |
face_box = self.coord_list_cycle[i] | |
mask,crop_box = get_image_prepare_material(frame,face_box) | |
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png",mask) | |
self.mask_coords_list_cycle += [crop_box] | |
self.mask_list_cycle.append(mask) | |
with open(self.mask_coords_path, 'wb') as f: | |
pickle.dump(self.mask_coords_list_cycle, f) | |
with open(self.coords_path, 'wb') as f: | |
pickle.dump(self.coord_list_cycle, f) | |
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path)) | |
return bbox_shift_text | |
def inference_noprepare(self, audio_path, | |
source_video, bbox_shift, | |
batch_size = 4, | |
fps = 25, | |
progress = gr.Progress(track_tqdm=True)): | |
out_vid_name = "res" | |
os.makedirs(self.avatar_path+'/tmp',exist_ok =True) | |
print("start inference") | |
############################################## extract audio feature ############################################## | |
start_time = time.time() | |
whisper_feature = self.audio_processor.audio2feat(audio_path) | |
whisper_chunks = self.audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) | |
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms") | |
############################################## inference batch by batch ############################################## | |
video_num = len(whisper_chunks) | |
res_frame_queue = queue.Queue() | |
self.idx = 0 | |
# # Create a sub-thread and start it | |
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num)) | |
process_thread.start() | |
gen = datagen(whisper_chunks, | |
self.input_latent_list_cycle, | |
batch_size) | |
start_time = time.time() | |
res_frame_list = [] | |
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): | |
audio_feature_batch = torch.from_numpy(whisper_batch) | |
audio_feature_batch = audio_feature_batch.to(device=self.unet.device, | |
dtype=self.unet.model.dtype) | |
audio_feature_batch = self.pe(audio_feature_batch) | |
latent_batch = latent_batch.to(dtype=self.unet.model.dtype) | |
pred_latents = self.unet.model(latent_batch, | |
self.timesteps, | |
encoder_hidden_states=audio_feature_batch).sample | |
recon = self.vae.decode_latents(pred_latents) | |
for res_frame in recon: | |
res_frame_queue.put(res_frame) | |
# Close the queue and sub-thread after all tasks are completed | |
process_thread.join() | |
if self.skip_save_images is True: | |
print('Total process time of {} frames without saving images = {}s'.format( | |
video_num, | |
time.time()-start_time)) | |
else: | |
print('Total process time of {} frames including saving images = {}s'.format( | |
video_num, | |
time.time()-start_time)) | |
if out_vid_name is not None and self.skip_save_images is False: | |
# optional | |
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/temp.mp4" | |
print(cmd_img2video) | |
os.system(cmd_img2video) | |
output_vid = os.path.join(self.video_out_path, out_vid_name+".mp4") # on | |
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}" | |
print(cmd_combine_audio) | |
os.system(cmd_combine_audio) | |
os.remove(f"{self.avatar_path}/temp.mp4") | |
shutil.rmtree(f"{self.avatar_path}/tmp") | |
print(f"result is save to {output_vid}") | |
print("\n") | |
return output_vid | |
def inference(self, audio_path, | |
source_video, bbox_shift, | |
batch_size = 4, | |
fps = 25, | |
progress = gr.Progress(track_tqdm=True)): | |
self.video_path = source_video | |
self.bbox_shift = bbox_shift | |
self.avatar_id = os.path.basename(source_video).split(".")[0] | |
self.avatar_path = f"./results/avatars/{self.avatar_id}" | |
self.full_imgs_path = f"{self.avatar_path}/full_imgs" | |
self.coords_path = f"{self.avatar_path}/coords.pkl" | |
self.latents_out_path= f"{self.avatar_path}/latents.pt" | |
self.video_out_path = f"{self.avatar_path}/vid_output/" | |
self.mask_out_path =f"{self.avatar_path}/mask" | |
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl" | |
self.avatar_info_path = f"{self.avatar_path}/avator_info.json" | |
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) | |
bbox_shift_text = None | |
if os.path.exists(self.avatar_path): | |
response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)") | |
if response.lower() == "y": | |
shutil.rmtree(self.avatar_path) | |
print("*********************************") | |
print(f" creating avator: {self.avatar_id}") | |
print("*********************************") | |
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) | |
bbox_shift_text = self.prepare_material_() | |
else: | |
self.input_latent_list_cycle = torch.load(self.latents_out_path) | |
with open(self.coords_path, 'rb') as f: | |
self.coord_list_cycle = pickle.load(f) | |
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) | |
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
self.frame_list_cycle = read_imgs(input_img_list) | |
with open(self.mask_coords_path, 'rb') as f: | |
self.mask_coords_list_cycle = pickle.load(f) | |
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) | |
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
self.mask_list_cycle = read_imgs(input_mask_list) | |
else: | |
print("*********************************") | |
print(f" creating avator: {self.avatar_id}") | |
print("*********************************") | |
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) | |
bbox_shift_text = self.prepare_material_() | |
if self.input_latent_list_cycle is None: | |
self.input_latent_list_cycle = torch.load(self.latents_out_path) | |
if self.mask_list_cycle is None: | |
with open(self.coords_path, 'rb') as f: | |
self.coord_list_cycle = pickle.load(f) | |
if self.frame_list_cycle is None: | |
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) | |
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
self.frame_list_cycle = read_imgs(input_img_list) | |
if self.mask_coords_list_cycle is None: | |
with open(self.mask_coords_path, 'rb') as f: | |
self.mask_coords_list_cycle = pickle.load(f) | |
if self.mask_list_cycle is None: | |
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) | |
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
self.mask_list_cycle = read_imgs(input_mask_list) | |
with open(self.coords_path, 'rb') as f: | |
self.coord_list_cycle = pickle.load(f) | |
if bbox_shift_text is None: | |
bbox_shift_text = get_bbox_range(input_img_list, bbox_shift) | |
out_vid_name = "res" | |
os.makedirs(self.avatar_path+'/tmp',exist_ok =True) | |
print("start inference") | |
############################################## extract audio feature ############################################## | |
start_time = time.time() | |
whisper_feature = self.audio_processor.audio2feat(audio_path) | |
whisper_chunks = self.audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) | |
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms") | |
############################################## inference batch by batch ############################################## | |
video_num = len(whisper_chunks) | |
res_frame_queue = queue.Queue() | |
self.idx = 0 | |
# # Create a sub-thread and start it | |
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue, video_num)) | |
process_thread.start() | |
gen = datagen(whisper_chunks, | |
self.input_latent_list_cycle, | |
batch_size) | |
start_time = time.time() | |
res_frame_list = [] | |
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): | |
audio_feature_batch = torch.from_numpy(whisper_batch) | |
audio_feature_batch = audio_feature_batch.to(device=self.unet.device, | |
dtype=self.unet.model.dtype) | |
audio_feature_batch = self.pe(audio_feature_batch) | |
latent_batch = latent_batch.to(dtype=self.unet.model.dtype) | |
pred_latents = self.unet.model(latent_batch, | |
self.timesteps, | |
encoder_hidden_states=audio_feature_batch).sample | |
recon = self.vae.decode_latents(pred_latents) | |
for res_frame in recon: | |
res_frame_queue.put(res_frame) | |
# Close the queue and sub-thread after all tasks are completed | |
process_thread.join() | |
if self.skip_save_images is True: | |
print('Total process time of {} frames without saving images = {}s'.format( | |
video_num, | |
time.time()-start_time)) | |
else: | |
print('Total process time of {} frames including saving images = {}s'.format( | |
video_num, | |
time.time()-start_time)) | |
if out_vid_name is not None and self.skip_save_images is False: | |
# optional | |
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/temp.mp4" | |
print(cmd_img2video) | |
os.system(cmd_img2video) | |
output_vid = os.path.join(self.video_out_path, out_vid_name+".mp4") # on | |
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}" | |
print(cmd_combine_audio) | |
os.system(cmd_combine_audio) | |
os.remove(f"{self.avatar_path}/temp.mp4") | |
shutil.rmtree(f"{self.avatar_path}/tmp") | |
print(f"result is save to {output_vid}") | |
print("\n") | |
return output_vid, bbox_shift_text | |
class MuseTalk: | |
def __init__(self): | |
# load model weights | |
self.audio_processor, self.vae, self.unet, self.pe = load_all_model() | |
import platform | |
if torch.cuda.is_available(): | |
device = "cuda" | |
elif platform.system() == 'Darwin': # macos | |
device = "mps" | |
else: | |
device = "cpu" | |
self.timesteps = torch.tensor([0], device=device) | |
def inference(self, audio_path, video_path, bbox_shift): | |
args_dict={"result_dir":'./results/output', "fps":25, "batch_size":8, "output_vid_name":'', "use_saved_coord":False}#same with inferenece script | |
args = Namespace(**args_dict) | |
print(args) | |
input_basename = os.path.basename(video_path).split('.')[0] | |
audio_basename = os.path.basename(audio_path).split('.')[0] | |
output_basename = f"{input_basename}_{audio_basename}" | |
result_img_save_path = os.path.join(args.result_dir, output_basename) # related to video & audio inputs | |
crop_coord_save_path = os.path.join(result_img_save_path, input_basename+".pkl") # only related to video input | |
os.makedirs(result_img_save_path,exist_ok =True) | |
if args.output_vid_name=="": | |
output_vid_name = os.path.join(args.result_dir, output_basename+".mp4") | |
else: | |
output_vid_name = os.path.join(args.result_dir, args.output_vid_name) | |
############################################## extract frames from source video ############################################## | |
if get_file_type(video_path)=="video": | |
save_dir_full = os.path.join(args.result_dir, input_basename) | |
os.makedirs(save_dir_full,exist_ok = True) | |
# cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png" | |
# os.system(cmd) | |
# 读取视频 | |
reader = imageio.get_reader(video_path) | |
# 保存图片 | |
for i, im in enumerate(reader): | |
imageio.imwrite(f"{save_dir_full}/{i:08d}.png", im) | |
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) | |
fps = get_video_fps(video_path) | |
else: # input img folder | |
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) | |
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
fps = args.fps | |
#print(input_img_list) | |
############################################## extract audio feature ############################################## | |
whisper_feature = self.audio_processor.audio2feat(audio_path) | |
whisper_chunks = self.audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) | |
############################################## preprocess input image ############################################## | |
if os.path.exists(crop_coord_save_path) and args.use_saved_coord: | |
print("using extracted coordinates") | |
with open(crop_coord_save_path,'rb') as f: | |
coord_list = pickle.load(f) | |
frame_list = read_imgs(input_img_list) | |
else: | |
print("extracting landmarks...time consuming") | |
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) | |
with open(crop_coord_save_path, 'wb') as f: | |
pickle.dump(coord_list, f) | |
bbox_shift_text=get_bbox_range(input_img_list, bbox_shift) | |
i = 0 | |
input_latent_list = [] | |
for bbox, frame in zip(coord_list, frame_list): | |
if bbox == coord_placeholder: | |
continue | |
x1, y1, x2, y2 = bbox | |
crop_frame = frame[y1:y2, x1:x2] | |
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) | |
latents = self.vae.get_latents_for_unet(crop_frame) | |
input_latent_list.append(latents) | |
# to smooth the first and the last frame | |
frame_list_cycle = frame_list + frame_list[::-1] | |
coord_list_cycle = coord_list + coord_list[::-1] | |
input_latent_list_cycle = input_latent_list + input_latent_list[::-1] | |
############################################## inference batch by batch ############################################## | |
print("start inference") | |
video_num = len(whisper_chunks) | |
batch_size = args.batch_size | |
gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size) | |
res_frame_list = [] | |
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))): | |
tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch] | |
audio_feature_batch = torch.stack(tensor_list).to(self.unet.device) # torch, B, 5*N,384 | |
audio_feature_batch = self.pe(audio_feature_batch) | |
pred_latents = self.unet.model(latent_batch, self.timesteps, encoder_hidden_states=audio_feature_batch).sample | |
recon = self.vae.decode_latents(pred_latents) | |
for res_frame in recon: | |
res_frame_list.append(res_frame) | |
############################################## pad to full image ############################################## | |
print("pad talking image to original video") | |
for i, res_frame in enumerate(tqdm(res_frame_list)): | |
bbox = coord_list_cycle[i%(len(coord_list_cycle))] | |
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) | |
x1, y1, x2, y2 = bbox | |
try: | |
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) | |
except: | |
# print(bbox) | |
continue | |
combine_frame = get_image(ori_frame,res_frame,bbox) | |
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame) | |
# cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p temp.mp4" | |
# print(cmd_img2video) | |
# os.system(cmd_img2video) | |
# 帧率 | |
fps = 25 | |
# 图片路径 | |
# 输出视频路径 | |
output_video = 'temp.mp4' | |
# 读取图片 | |
def is_valid_image(file): | |
pattern = re.compile(r'\d{8}\.png') | |
return pattern.match(file) | |
images = [] | |
files = [file for file in os.listdir(result_img_save_path) if is_valid_image(file)] | |
files.sort(key=lambda x: int(x.split('.')[0])) | |
for file in files: | |
filename = os.path.join(result_img_save_path, file) | |
images.append(imageio.imread(filename)) | |
# 保存视频 | |
imageio.mimwrite(output_video, images, 'FFMPEG', fps=fps, codec='libx264', pixelformat='yuv420p') | |
# cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i temp.mp4 {output_vid_name}" | |
# print(cmd_combine_audio) | |
# os.system(cmd_combine_audio) | |
input_video = './temp.mp4' | |
# Check if the input_video and audio_path exist | |
if not os.path.exists(input_video): | |
raise FileNotFoundError(f"Input video file not found: {input_video}") | |
if not os.path.exists(audio_path): | |
raise FileNotFoundError(f"Audio file not found: {audio_path}") | |
# 读取视频 | |
reader = imageio.get_reader(input_video) | |
fps = reader.get_meta_data()['fps'] # 获取原视频的帧率 | |
# 将帧存储在列表中 | |
frames = images | |
# 保存视频并添加音频 | |
# imageio.mimwrite(output_vid_name, frames, 'FFMPEG', fps=fps, codec='libx264', audio_codec='aac', input_params=['-i', audio_path]) | |
# input_video = ffmpeg.input(input_video) | |
# input_audio = ffmpeg.input(audio_path) | |
print(len(frames)) | |
# imageio.mimwrite( | |
# output_video, | |
# frames, | |
# 'FFMPEG', | |
# fps=25, | |
# codec='libx264', | |
# audio_codec='aac', | |
# input_params=['-i', audio_path], | |
# output_params=['-y'], # Add the '-y' flag to overwrite the output file if it exists | |
# ) | |
# writer = imageio.get_writer(output_vid_name, fps = 25, codec='libx264', quality=10, pixelformat='yuvj444p') | |
# for im in frames: | |
# writer.append_data(im) | |
# writer.close() | |
# Load the video | |
video_clip = VideoFileClip(input_video) | |
# Load the audio | |
audio_clip = AudioFileClip(audio_path) | |
# Set the audio to the video | |
video_clip = video_clip.set_audio(audio_clip) | |
# Write the output video | |
video_clip.write_videofile(output_vid_name, codec='libx264', audio_codec='aac',fps=25) | |
os.remove("temp.mp4") | |
#shutil.rmtree(result_img_save_path) | |
print(f"result is save to {output_vid_name}", bbox_shift_text) | |
return output_vid_name, bbox_shift_text | |
def check_video(self, video): | |
if not isinstance(video, str): | |
return video # in case of none type | |
# Define the output video file name | |
dir_path, file_name = os.path.split(video) | |
if file_name.startswith("outputxxx_"): | |
return video | |
# Add the output prefix to the file name | |
output_file_name = "outputxxx_" + file_name | |
os.makedirs('./results',exist_ok=True) | |
os.makedirs('./results/output',exist_ok=True) | |
os.makedirs('./results/input',exist_ok=True) | |
# Combine the directory path and the new file name | |
output_video = os.path.join('./results/input', output_file_name) | |
# # Run the ffmpeg command to change the frame rate to 25fps | |
# command = f"ffmpeg -i {video} -r 25 -vcodec libx264 -vtag hvc1 -pix_fmt yuv420p crf 18 {output_video} -y" | |
# read video | |
reader = imageio.get_reader(video) | |
fps = reader.get_meta_data()['fps'] # get fps from original video | |
# conver fps to 25 | |
frames = [im for im in reader] | |
target_fps = 25 | |
L = len(frames) | |
L_target = int(L / fps * target_fps) | |
original_t = [x / fps for x in range(1, L+1)] | |
t_idx = 0 | |
target_frames = [] | |
for target_t in tqdm(range(1, L_target+1)): | |
while target_t / target_fps > original_t[t_idx]: | |
t_idx += 1 # find the first t_idx so that target_t / target_fps <= original_t[t_idx] | |
if t_idx >= L: | |
break | |
target_frames.append(frames[t_idx]) | |
# save video | |
imageio.mimwrite(output_video, target_frames, 'FFMPEG', fps=25, codec='libx264', quality=9, pixelformat='yuv420p') | |
return output_video | |
if __name__ == "__main__": | |
# musetalk = MuseTalk() | |
musetalk = MuseTalk_RealTime() | |
audio_path = "Musetalk/data/audio/sun.wav" | |
video_path = "Musetalk/data/video/yongen_musev.mp4" | |
bbox_shift = 5 | |
video_path, bbox_shift_text = musetalk.prepare_material(video_path, bbox_shift) | |
# print(video_path, bbox_shift_text) | |
print("Inference Params:", audio_path, video_path, bbox_shift) | |
res_video = musetalk.inference_noprepare(audio_path, video_path, bbox_shift) | |
# output_video = musetalk.check_video(video_path) | |
# print("output_video:", output_video) | |
# res_video, bbox_shift_scale = musetalk.inference(audio_path, video_path, bbox_shift) | |
# print(bbox_shift_scale) | |