|
from transformers import pipeline |
|
import gradio as gr |
|
import docx |
|
import pandas as pd |
|
|
|
|
|
model_name = "johnyyhk/bert-finetuned-ner-chinese-people-daily" |
|
get_completion = pipeline("ner", model=model_name) |
|
|
|
|
|
def merge_tokens(tokens): |
|
merged_tokens = [] |
|
for token in tokens: |
|
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]): |
|
|
|
last_token = merged_tokens[-1] |
|
last_token['word'] += token['word'].replace('##', '') |
|
last_token['end'] = token['end'] |
|
last_token['score'] = (last_token['score'] + token['score']) / 2 |
|
else: |
|
|
|
merged_tokens.append(token) |
|
return merged_tokens |
|
|
|
|
|
def extract_person_names(tokens): |
|
names = [] |
|
current_name = "" |
|
for token in tokens: |
|
if token['entity'] == 'B-PER': |
|
if current_name: |
|
names.append(current_name) |
|
current_name = token['word'] |
|
elif token['entity'] == 'I-PER' and current_name: |
|
current_name += token['word'] |
|
else: |
|
if current_name: |
|
names.append(current_name) |
|
current_name = "" |
|
if current_name: |
|
names.append(current_name) |
|
return list(set(names)) |
|
|
|
|
|
def process_docx(file_path): |
|
doc = docx.Document(file_path) |
|
paragraphs = [] |
|
for p in doc.paragraphs: |
|
text = p.text.strip() |
|
if text: |
|
|
|
sub_paragraphs = text.split("\n") |
|
paragraphs.extend([sub_p.strip() for sub_p in sub_paragraphs if sub_p.strip()]) |
|
return paragraphs |
|
|
|
|
|
def create_paragraph_blocks(paragraphs, block_size=4): |
|
return ["\n".join(paragraphs[i:i + block_size]) for i in range(0, len(paragraphs), block_size)] |
|
|
|
|
|
def process_ner(file): |
|
paragraphs = process_docx(file.name) |
|
paragraph_blocks = create_paragraph_blocks(paragraphs) |
|
|
|
all_names = [] |
|
for block in paragraph_blocks: |
|
tokens = get_completion(block) |
|
merged_tokens = merge_tokens(tokens) |
|
names = extract_person_names(merged_tokens) |
|
all_names.extend(names) |
|
|
|
all_names = list(set(all_names)) |
|
|
|
|
|
df = pd.DataFrame({'Person Names': all_names}) |
|
output_path = "ner_output.xlsx" |
|
df.to_excel(output_path, index=False) |
|
|
|
return output_path |
|
|
|
|
|
def ner_interface(file): |
|
output_path = process_ner(file) |
|
return f"NER completado. Archivo guardado en: {output_path}", output_path |
|
|
|
demo = gr.Interface( |
|
fn=ner_interface, |
|
inputs=gr.File(label="Sube un archivo DOCX"), |
|
outputs=[gr.Textbox(label="Resultado"), gr.File(label="Descargar archivo")], |
|
title="NER de Nombres de Personas", |
|
description="Extrae nombres de personas desde un archivo DOCX usando NER y guarda los resultados en un archivo Excel.", |
|
allow_flagging="never" |
|
) |
|
|
|
demo.launch(inline=False) |