Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import gradio as gr
|
3 |
+
import docx
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# Cargar el modelo NER
|
7 |
+
model_name = "johnyyhk/bert-finetuned-ner-chinese-people-daily"
|
8 |
+
get_completion = pipeline("ner", model=model_name)
|
9 |
+
|
10 |
+
# Función para fusionar tokens
|
11 |
+
def merge_tokens(tokens):
|
12 |
+
merged_tokens = []
|
13 |
+
for token in tokens:
|
14 |
+
if merged_tokens and token['entity'].startswith('I-') and merged_tokens[-1]['entity'].endswith(token['entity'][2:]):
|
15 |
+
# Si el token continúa la entidad del anterior, fusiónalos
|
16 |
+
last_token = merged_tokens[-1]
|
17 |
+
last_token['word'] += token['word'].replace('##', '')
|
18 |
+
last_token['end'] = token['end']
|
19 |
+
last_token['score'] = (last_token['score'] + token['score']) / 2
|
20 |
+
else:
|
21 |
+
# De lo contrario, agrega el token a la lista
|
22 |
+
merged_tokens.append(token)
|
23 |
+
return merged_tokens
|
24 |
+
|
25 |
+
# Extraer nombres de personas de la respuesta del modelo
|
26 |
+
def extract_person_names(tokens):
|
27 |
+
names = []
|
28 |
+
current_name = ""
|
29 |
+
for token in tokens:
|
30 |
+
if token['entity'] == 'B-PER':
|
31 |
+
if current_name:
|
32 |
+
names.append(current_name)
|
33 |
+
current_name = token['word']
|
34 |
+
elif token['entity'] == 'I-PER' and current_name:
|
35 |
+
current_name += token['word']
|
36 |
+
else:
|
37 |
+
if current_name:
|
38 |
+
names.append(current_name)
|
39 |
+
current_name = ""
|
40 |
+
if current_name:
|
41 |
+
names.append(current_name)
|
42 |
+
return list(set(names)) # Eliminar duplicados
|
43 |
+
|
44 |
+
# Procesar el archivo DOCX
|
45 |
+
def process_docx(file_path):
|
46 |
+
doc = docx.Document(file_path)
|
47 |
+
paragraphs = []
|
48 |
+
for p in doc.paragraphs:
|
49 |
+
text = p.text.strip()
|
50 |
+
if text:
|
51 |
+
# Dividir por saltos de línea internos si existen
|
52 |
+
sub_paragraphs = text.split("\n")
|
53 |
+
paragraphs.extend([sub_p.strip() for sub_p in sub_paragraphs if sub_p.strip()])
|
54 |
+
return paragraphs
|
55 |
+
|
56 |
+
# Crear bloques de párrafos
|
57 |
+
def create_paragraph_blocks(paragraphs, block_size=4):
|
58 |
+
return ["\n".join(paragraphs[i:i + block_size]) for i in range(0, len(paragraphs), block_size)]
|
59 |
+
|
60 |
+
# Función principal de procesamiento
|
61 |
+
def process_ner(file):
|
62 |
+
paragraphs = process_docx(file.name)
|
63 |
+
paragraph_blocks = create_paragraph_blocks(paragraphs)
|
64 |
+
|
65 |
+
all_names = []
|
66 |
+
for block in paragraph_blocks:
|
67 |
+
tokens = get_completion(block)
|
68 |
+
merged_tokens = merge_tokens(tokens)
|
69 |
+
names = extract_person_names(merged_tokens)
|
70 |
+
all_names.extend(names)
|
71 |
+
|
72 |
+
all_names = list(set(all_names)) # Eliminar duplicados
|
73 |
+
|
74 |
+
# Guardar en un archivo Excel
|
75 |
+
df = pd.DataFrame({'Person Names': all_names})
|
76 |
+
output_path = "ner_output.xlsx"
|
77 |
+
df.to_excel(output_path, index=False)
|
78 |
+
|
79 |
+
return output_path
|
80 |
+
|
81 |
+
# Gradio interfaz
|
82 |
+
def ner_interface(file):
|
83 |
+
output_path = process_ner(file)
|
84 |
+
return f"NER completado. Archivo guardado en: {output_path}", output_path
|
85 |
+
|
86 |
+
demo = gr.Interface(
|
87 |
+
fn=ner_interface,
|
88 |
+
inputs=gr.File(label="Sube un archivo DOCX"),
|
89 |
+
outputs=[gr.Textbox(label="Resultado"), gr.File(label="Descargar archivo")],
|
90 |
+
title="NER de Nombres de Personas",
|
91 |
+
description="Extrae nombres de personas desde un archivo DOCX usando NER y guarda los resultados en un archivo Excel.",
|
92 |
+
allow_flagging="never"
|
93 |
+
)
|
94 |
+
|
95 |
+
demo.launch(inline=False)
|